Optimal Selection of Basis Functions for Robust Tracking Control of Uncertain Linear Systems - with Application to 3D Printing

Author(s):  
Keval Ramani ◽  
Chinedum Okwudire

Abstract There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of its distinct advantages compared to other tracking control methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through the plant dynamics and the coefficients are selected such that tracking error is minimized. Similar to other feedforward control methods, the tracking accuracy of the FBF approach deteriorates in the presence of uncertainties. However, unlike other methods, the FBF approach presents flexibility in terms of the choice of the basis functions, which can be used to improve its accuracy. This paper analyzes the effect of the choice of the basis functions on the tracking accuracy of FBF, in the presence of uncertainties, using the Frobenius norm of the lifted system representation of FBF's error dynamics. Based on the analysis, a methodology for optimal selection of basis functions to maximize robustness is proposed, together with an approach to avoid large control effort when it is applied to NMP systems. The basis functions resulting from this process are called robust basis functions. Applied experimentally to a desktop 3D printer with uncertain NMP dynamics, up to 48% improvement in tracking accuracy is achieved using the proposed robust basis functions compared to B-splines, while utilizing much less control effort.

Author(s):  
Keval S. Ramani ◽  
Molong Duan ◽  
Chinedum E. Okwudire ◽  
A. Galip Ulsoy

Abstract Accurate tracking of nonminimum phase (NMP) systems is well known to require large amounts of control effort. It is, therefore, of practical value to minimize the effort needed to achieve a desired level of tracking accuracy for NMP systems. There is growing interest in the use of the filtered basis functions (FBF) approach for tracking the control of linear NMP systems because of distinct performance advantages it has over other methods. The FBF approach expresses the control input as a linear combination of user-defined basis functions. The basis functions are forward filtered through the dynamics of the plant, and the coefficients are selected such that the tracking error is minimized. There is a wide variety of basis functions that can be used with the FBF approach, but there has been no work to date on how to select the best set of basis functions. Toward selecting the best basis functions, the Frobenius norm of the lifted system representation (LSR) of dynamics is proposed as an excellent metric for evaluating the performance of linear time varying (LTV) discrete-time tracking controllers, like FBF, independent of the desired trajectory to be tracked. Using the metric, an optimal set of basis functions that minimize the control effort without sacrificing tracking accuracy is proposed. The optimal set of basis functions is shown in simulations and experiments to significantly reduce control effort while maintaining or improving tracking accuracy compared to popular basis functions, like B-splines.


Author(s):  
Keval S. Ramani ◽  
Chinedum E. Okwudire

Abstract There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of the distinct advantages it presents as compared to other popular methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions. The basis functions are forward filtered through the plant dynamics and the coefficients of the linear combination are selected such that the tracking error is minimized. This paper proposes a two-stage robust filtered basis functions approach for tracking control of linear systems in the presence of known uncertainty. In the first stage, the nominal model for filtering the basis functions is selected such that a Frobenius norm metric which considers the known uncertainty is minimized. In the second stage, an optimal set of basis functions is selected such that the effect of uncertainty is minimized for the nominal model selected in the first stage. Experiments on a 3D printer, demonstrate up to 7 times improvement in tracking performance using the proposed method as compared to the standard FBF approach.


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
M. R. Homaeinezhad ◽  
F. FotoohiNia

Abstract In dynamically switched systems with unknown switching signal, the control system is conventionally designed based on the worst switching scenario to ensure system stability. Such conservative design demands excessive control effort in less critical switching configurations. In the case of continuum mechanics systems, such excessive control inputs result in increased structural deformations and resultant modeling uncertainties. These deformations alter differential equations of motion which cripple the task of control. In this paper, a new approach for tracking control of uncertain continuum mechanics multivariable systems undergoing switching dynamics and unknown time delay has been proposed. Control algorithm is constructed based on the mathematical rigid model of the plant and a Common Lyapunov Function (CLF) is proposed upon sliding hyperplane regarding all switching configurations. Considering the model-based nature of sliding mode control (SMC) and inevitable uncertainties induced from modeling simplifications of continuum system or parameter evaluation errors, Finite Element Analysis (FEA) is utilized to approximate total model uncertainties. To obtain robust stability, instead of conventional switching functions in the construction of control law, the control inputs are selected such that system dynamics reside within stability bounds which are calculated based on the Lyapunov asymptotic stability criterion. Therefore, the unwanted chattering issue caused by continuous switching is not observed in control input signals. Eventually, the accuracy of the proposed method has been verified through the student version of ANSYS® mechanical APDL-based simulations and its effectiveness has been demonstrated in multiple operating conditions.


2015 ◽  
Vol 38 (5) ◽  
pp. 861-873 ◽  
Author(s):  
Francesco Topputo ◽  
Martino Miani ◽  
Franco Bernelli-Zazzera

Sign in / Sign up

Export Citation Format

Share Document