A Computational Study of the Thermodynamic Conditions Leading to Autoignition in Nanosecond Pulsed Discharges

Author(s):  
Vyaas Gururajan ◽  
Riccardo Scarcelli ◽  
Anand Karpatne ◽  
Douglas Breden ◽  
Laxminarayan Raja ◽  
...  

Abstract Nanosecond pulsed discharges have attracted the attention of engine manufacturers due to the possibility of attaining distributed ignition sites that accelerate burn rates while resulting in very little electrode erosion . Multidimensional modeling tools currently capture the electrical structure of such discharges accurately, but resolving the chemical structure remains a challenging problem owing to the disparity of time-scales in streamer propagation (nanoseconds) and ignition phenomena (microseconds). The purpose of this study is to extend multidimensional results towards resolving the chemical structure in the wake of streamers (or the afterglow) by using a batch reactor model. This can afford the use of very detailed chemical kinetic information. The full non-equilibrium nature of the electrons is taken into account, along with fast gas heating, shock wave propagation, and thermal diffusion. The results shed light on ignition phenomena brought about by such discharges.

Author(s):  
Vyaas Gururajan ◽  
Riccardo Scarcelli ◽  
Anand Karpatne ◽  
Douglas Breden ◽  
Laxminarayan Raja ◽  
...  

Abstract Nanosecond pulsed discharges have attracted the attention of engine manufacturers due to the possibility of attaining distributed ignition sites that accelerate burn rates while resulting in very little electrode erosion. Multidimensional modeling tools currently capture the electrical structure of such discharges accurately, but resolving the chemical structure remains a challenging problem owing to the disparity of time-scales in streamer propagation (nanoseconds) and ignition phenomena (microseconds). The purpose of this study is to extend multidimensional results towards resolving the chemical structure in the wake of streamers (or the afterglow) by using a batch reactor model. This can afford the use of very detailed chemical kinetic information. The full non-equilibrium nature of the electrons is taken into account, along with fast gas heating, shock wave propagation, and thermal diffusion. The results shed light on ignition phenomena brought about by such discharges.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.


2021 ◽  
pp. 1-10
Author(s):  
Omid Samimi Abianeh

Abstract Autoignition of an n-heptane/air mixture was simulated in non-uniform temperature environments of a Rapid Compression Machine (RCM) and Shock-Tube (ST) with and without the presence of a cold-spot. The simulations were performed to investigate how the presence of a cold-spot and the cold boundary layer of the chamber wall may affect the ignition delay of the hydrocarbon mixture with NTC behavior. The simulations were performed using three models, (1) 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model, (2) Zero-Dimensional (0D) homogenous batch reactor model by including the heat transfer model, and (3) 0D adiabatic homogenous batch reactor model. A detailed n-heptane mechanism was reduced in this work and used for 3D combustion modeling. A cold-spot critical radius of 7 mm was determined, which affects the ignition delay by more than 9%. In addition, two combustion modes were observed in the combustion chamber with a non-uniform temperature environment. With the first combustion mode, combustion starts at the high gas temperature region of the combustion chamber and quickly propagates towards the periphery of the chamber. In this combustion mode, the location of the maximum concentration of hydroxyl radical and the maximum temperature are the same. With the second combustion mode, the combustion starts at the periphery of the chamber, where the temperature is lower than the center of the chamber due to heat transfer to the cold chamber wall. The location of maximum concentration of the hydroxyl radical and maximum temperature are different with this combustion mode. The two observed combustion modes are due to the NTC behavior of the n-heptane mixture. The 0D homogenous batch reactor model (with and without heat transfer models) failed to mimic the ignition delay accurately when the second combustion mode was present. In addition, a propagating combustion has been observed in the simulation which is in agreement with some of the optical autoignition diagnostics of these hydrocarbons. This propagating combustion leads to a gradual pressure rise during autoignition, rather than a sharp pressure rise. The results of this work show that 0D homogenous batch reactor models are unable to simulate autoignition of mixtures with NTC behavior.


2020 ◽  
Vol 4 (3) ◽  
pp. 46 ◽  
Author(s):  
Jiyoung Moon ◽  
Dela Quarme Gbadago ◽  
Sungwon Hwang

The oxidative dehydrogenation (ODH) of butene has been recently developed as a viable alternative for the synthesis of 1,3-butadiene due to its advantages over other conventional methods. Various catalytic reactors for this process have been previously studied, albeit with a focus on lab-scale design. In this study, a multi-tubular reactor model for the butadiene synthesis via ODH of butene was developed using computational fluid dynamics (CFD). For this, the 3D multi-tubular model, which combines complex reaction kinetics with a shell-side coolant fluid over a series of individual reactor tubes, was generated using OpenFOAM®. Then, the developed model was validated and analyzed with the experimental results, which gave a maximum error of 7.5%. Finally, parametric studies were conducted to evaluate the effect of thermodynamic conditions (isothermal, non-isothermal and adiabatic), feed temperature, and gas velocity on reactor performance. The results showed the formation of a hotspot at the reactor exit, which necessitates an efficient temperature control at that section of the reactor. It was also found that as the temperature increased, the conversion and yield increased whilst the selectivity decreased. The converse was found for increasing velocities.


Author(s):  
Anamol Pundle ◽  
David G. Nicol ◽  
Philip C. Malte ◽  
Joel D. Hiltner

This paper discusses chemical kinetic modeling used to analyze the formation of pollutant emissions in large-bore, lean-burn gas reciprocating engines. Pollutants considered are NOx, CO, HCHO, and UHC. A quasi-dimensional model, built as a chemical reactor network (CRN), is described. In this model, the flame front is treated as a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR), and reaction in the burnt gas is modeled assuming a batch reactor of constant-pressure and fixed-mass for each crank angle increment. The model treats full chemical kinetics. Engine heat loss is treated by incorporating the Woschni model into the CRN. The mass burn rate is selected so that the modeled cylinder pressure matches the experiment pressure trace. Originally, the model was developed for large, low speed, two-stoke, lean-burn engines. However, recently, the model has been formatted for the four-stroke, open-chamber, lean-burn engine. The focus of this paper is the application of the model to a four-stroke engine. This is a single-cylinder non-production variant of a heavy duty lean-burn engine of about 5 liters cylinder displacement Engine speed is 1500 RPM. Key findings of this work are the following. 1) Modeled NOx and CO are found to agree closely with emission measurements for this engine over a range of relative air-fuel ratios tested. 2) This modeling shows the importance of including N2O chemistry in the NOx calculation. For λ = 1.7, the model indicates that about 30% of the NOx emitted is formed by the N2O mechanism, with the balance from the Zeldovich mechanism. 3) The modeling shows that the CO and HCHO emissions arise from partial oxidation late in the expansion stroke as unburned charge remaining mixes into the burnt gas. 4) Model generated plots of HCHO versus CH4 emission for the four-stroke engine are in agreement with field data for large-bore, lean-burn, gas reciprocating engines. Also, recent engine tests show the correlation of UHC and CO emissions to crevice volume. These tests suggest that HCHO emissions also are affected by crevice flows through partial oxidation of UHC late in the expansion stroke.


1972 ◽  
Vol 92 (3) ◽  
pp. 29-35
Author(s):  
R. Fujimoto ◽  
S. Toshima

Sign in / Sign up

Export Citation Format

Share Document