Autoignition of Reacting Hydrocarbon Mixture with Negative Temperature Coefficient Due to the Cold-Spot and Cold Chamber Wall

2021 ◽  
pp. 1-10
Author(s):  
Omid Samimi Abianeh

Abstract Autoignition of an n-heptane/air mixture was simulated in non-uniform temperature environments of a Rapid Compression Machine (RCM) and Shock-Tube (ST) with and without the presence of a cold-spot. The simulations were performed to investigate how the presence of a cold-spot and the cold boundary layer of the chamber wall may affect the ignition delay of the hydrocarbon mixture with NTC behavior. The simulations were performed using three models, (1) 3-Dimensional (3D) Computational Fluid Dynamics (CFD) model, (2) Zero-Dimensional (0D) homogenous batch reactor model by including the heat transfer model, and (3) 0D adiabatic homogenous batch reactor model. A detailed n-heptane mechanism was reduced in this work and used for 3D combustion modeling. A cold-spot critical radius of 7 mm was determined, which affects the ignition delay by more than 9%. In addition, two combustion modes were observed in the combustion chamber with a non-uniform temperature environment. With the first combustion mode, combustion starts at the high gas temperature region of the combustion chamber and quickly propagates towards the periphery of the chamber. In this combustion mode, the location of the maximum concentration of hydroxyl radical and the maximum temperature are the same. With the second combustion mode, the combustion starts at the periphery of the chamber, where the temperature is lower than the center of the chamber due to heat transfer to the cold chamber wall. The location of maximum concentration of the hydroxyl radical and maximum temperature are different with this combustion mode. The two observed combustion modes are due to the NTC behavior of the n-heptane mixture. The 0D homogenous batch reactor model (with and without heat transfer models) failed to mimic the ignition delay accurately when the second combustion mode was present. In addition, a propagating combustion has been observed in the simulation which is in agreement with some of the optical autoignition diagnostics of these hydrocarbons. This propagating combustion leads to a gradual pressure rise during autoignition, rather than a sharp pressure rise. The results of this work show that 0D homogenous batch reactor models are unable to simulate autoignition of mixtures with NTC behavior.

2021 ◽  
pp. 146808742110080
Author(s):  
Tetsuya Aizawa ◽  
Tomoki Kinoshita ◽  
Shinobu Akiyama ◽  
Kouya Shinohara ◽  
Yuusei Miyagawa

As a demonstration of a new method to examine the extremely unsteady and spatially varying wall heat transfer phenomena on diesel engine combustion chamber wall, high-speed imaging of infrared thermal radiation from the wall surface impinged by a diesel spray flame was attempted using a high-speed infrared camera. A 35 mm-diameter chromium-coated quartz window surface was impinged by a diesel spray flame with an impinging distance of 27 mm from the nozzle orifice in a constant volume combustion chamber. The infrared thermal radiation from the back surface of the 0.6 µm thick chromium layer was successfully visualized at 10 kHz frame rate and 128 × 128 pixel resolution through the quartz window. The infrared radiation exhibited coherent and streaky structure with radial stripes extending and waving from the stagnation point. The width of the radial stripes, spatial amplitude and the period of the waving movement were comparable to the ones for turbulent heat transfer on the engine cylinder wall previously measured with a heat flux sensor, suggesting that they are resulting from the turbulent structure in the wall-impinging diesel flame. The radiation intensity was calibrated to temperature and converted to heat flux via 3-D numerical analysis of transient thermal conduction in the quartz window. The peak-to-peak variation amplitudes of temperature and heat flux among the radial stripes during the diesel spray flame impingement were about 20 K and 2.3 MW/m2, corresponding to 13% of 150 K maximum temperature swing amplitude and 18 MW/m2 maximum heat flux, respectively.


2019 ◽  
Vol 292 ◽  
pp. 01063
Author(s):  
Lubomír Macků

An alternative method of determining exothermic reactor model parameters which include first order reaction rate constant is described in this paper. The method is based on known in reactor temperature development and is suitable for processes with changing quality of input substances. This method allows us to evaluate the reaction substances composition change and is also capable of the reaction rate constant (parameters of the Arrhenius equation) determination. Method can be used in exothermic batch or semi- batch reactors running processes based on the first order reaction. An example of such process is given here and the problem is shown on its mathematical model with the help of simulations.


2017 ◽  
Vol 19 (10) ◽  
pp. 1005-1023 ◽  
Author(s):  
Jerald A Caton

The thermodynamic limitation for the maximum efficiencies of internal combustion engines is an important consideration for the design and development of future engines. Knowing these limits helps direct resources to those areas with the most potential for improvements. Using an engine cycle simulation which includes the first and second laws of thermodynamics, this study has determined the fundamental thermodynamics that are responsible for these limits. This work has considered an automotive engine and has quantified the maximum efficiencies starting with the most ideal conditions. These ideal conditions included no heat losses, no mechanical friction, lean operation, and short burn durations. Then, each of these idealizations is removed in a step-by-step fashion until a configuration that represents current engines is obtained. During this process, a systematic thermodynamic evaluation was completed to determine the fundamental reasons for the limitations of the maximum efficiencies. For the most ideal assumptions, for compression ratios of 20 and 30, the thermal efficiencies were 62.5% and 66.9%, respectively. These limits are largely a result of the combustion irreversibilities. As each of the idealizations is relaxed, the thermal efficiencies continue to decrease. High compression ratios are identified as an important aspect for high-efficiency engines. Cylinder heat transfer was found to be one of the largest impediments to high efficiency. Reducing cylinder heat transfer, however, is difficult and may not result in much direct increases of piston work due to decreases of the ratio of specific heats. Throughout this work, the importance of high values of the ratio of specific heats was identified as important for achieving high thermal efficiencies. Depending on the selection of constraints, different values may be given for the maximum thermal efficiency. These constraints include the allowed values for compression ratio, heat transfer, friction, stoichiometry, cylinder pressure, and pressure rise rate.


2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Yujia Sun ◽  
Xiaobing Zhang

The purpose of this paper is to study the transient temperature responses of a hollow cylinder subjected to periodic boundary conditions, which comprises with a short heating period (a few milliseconds) and a relative long cooling period (a few seconds). During the heating process, the inner surface is under complex convection heat transfer condition, which is not so easy to approximate. This paper first calculated the gas temperature history and the convective heat transfer coefficient history between the gas flow and the inner surface and then they were applied to the inner surface as boundary conditions. Finite element analysis was used to solve the transient heat transfer equations of the hollow cylinder. Results show that the inner surface is under strong thermal impact and large temperature gradient occurs in the region adjacent to the inner surface. Sometimes chromium plating and water cooling are used to relief the thermal shock of a tube under such thermal conditions. The effects of these methods are analyzed, and it indicates that the chromium plating can reduce the maximum temperature of the inner surface for the first cycle during periodic heating and the water cooling method can reduce the growth trend of the maximum temperature for sustained conditions. We also investigate the effects of different parameters on the maximum temperature of the inner surface, like chromium thickness, water velocity, channel diameter, and number of cooling channels.


Author(s):  
Masoud Darbandi ◽  
Majid Ghafourizadeh

In this work, we numerically study the effects of turbulence intensity at the fuel and oxidizer stream inlets on the soot aerosol nano-particles formation in a kerosene fuel-based combustor. In this regard, we study the turbulence intensity effects specifically on the thermal performance and nano-particulate soot aerosol emissions. To construct our computer model, we simulate the soot formation and oxidation using the Polycyclic Aromatic Hydrocarbons PAHs-inception and the hydroxyl concept, respectively. Additionally, the soot nucleation process is described using the phenyl route, in which the soot inception is described based on the formations of two-ringed and three-ringed aromatics from acetylene, benzene, and phenyl radical. We use the two-equation soot model in which the soot mass fraction and the soot number density transport equations are solved considering the evolutionary process of soot nanoparticles, where all the nucleation, coagulation, surface growth, and oxidation phenomena are suitable considered in calculations. For the combustion modeling part, we benefit from the flamelets library, i.e., a lookup table, considering a detailed chemical kinetic mechanism consisting of 121 species and 2613 elementary reactions and solve the transport equations for the mean mixture fraction and its variance. We take into account the turbulence-chemistry interaction using the presumed-shape probability density functions PDFs. We apply the two-equation high-Reynolds-number k-ε turbulence model with round-jet corrections and suitable wall functions in performing our turbulence modeling. Solving the transport equations of turbulence kinetic energy and its dissipation rate, the turbulence closure problem can be resolved suitably. Furthermore, we take into account the radiation heat transfer of soot and gases assuming optically-thin flame, in which the radiation heat transfer of the most important radiating species is determined locally through the emissions. To evaluate our numerical solutions, we first solve an available well-documented experimental test, which provides the details of a kerosene-fueled turbulent nonpremixed flame. Then, we compare the achieved flame structure, i.e., the distributions of mean mixture fraction, temperature, and soot volume fraction, with those measured in the experiment. Next, we change the turbulence intensities of the incoming fuel and oxidizer streams gradually. So, we become able to evaluate the effects of different turbulence intensities on the achieved temperature and soot aerosol concentrations. Our results show that using moderate turbulence intensities at both fuel and oxidizer stream inlets would effectively increase the maximum temperature inside the combustor and this would reduce the exhaust gases temperature. It also reduces the concentrations of soot in the combustor and its emission to the exhaust gases effectively.


1989 ◽  
Vol 111 (1) ◽  
pp. 41-45 ◽  
Author(s):  
A. Zebib ◽  
Y. K. Wo

Thermal analysis of forced air cooling of an electronic component is modeled as a two-dimensional conjugate heat transfer problem. The velocity field in a constricted channel is first computed. Then, for a typical electronic module, the energy equation is solved with allowance for discontinuities in the thermal conductivity. Variation of the maximum temperature with the average air velocity is presented. The importance of our approach in evaluating possible benefits due to changes in component design and the limitations of the two-dimensional model are discussed.


Sign in / Sign up

Export Citation Format

Share Document