Particulate Emission Reduction by Fuel Injection Timing Optimization in a Gasoline Direct Injection Engine

2021 ◽  
pp. 1-19
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Optimized fuel injection timings in internal combustion (IC) engines exhibit superior performance, combustion characteristics, and lower emissions. Particularly, particulate emissions from a gasoline direct injection (GDI) engine are highly dependent on fuel injection timings. GDI engines have emerged as a popular choice of powerplants for automobiles among customers. They are preferred over multiple-port fuel injection (MPFI) engines in the transport sector because of their superior fuel economy and performance characteristics. The main objective of this study was to optimize a GDI engine for the lowest particulate emission at different fuel injection timings. GDI engine was investigated for particulate matter (PM) mass/ particulate number (PN) emissions at five fuel injection timings (230, 250, 270, 290, 310 °btdc), which covered the entire envelope. Once the optimum fuel injection timing was determined, an engine exhaust particle sizer was used to measure the particle size-number distribution. Particulate samples from the engine were also collected on the filter paper for morphological investigations of particulates collected under optimized fuel injection timings. These experiments confirmed the importance and need to optimize the fuel injection timings at every engine operating point to reduce the PM/PN emissions from a GDI engine, which remains one of the biggest challenges to this technology.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Hoseung Yi ◽  
Jihwan Seo ◽  
Young Soo Yu ◽  
Yunsung Lim ◽  
Sanguk Lee ◽  
...  

AbstractGasoline direct injection (GDI) engines emit less carbon dioxide (CO2) than port fuel injection (PFI) engines when fossil fuel conditions are the same. However, GDI engines emit more ultrafine particulate matter, which can have negative health effects, leading to particulate emission regulations. To satisfy these regulations, various studies have been done to reduce particulate matter, and several studies focused on lubricants. This study focuses on the influence of lubricant on the formation of particulate matter and its effect on particulate emissions in GDI engines. An instrumented, combustion and optical singe-cylinder GDI engine fueled by four different lubricant-gasoline blends was used with various injection conditions. Combustion experiments were used to determine combustion characteristics, and gaseous emissions indicated that the lubricant did not influence mixture homogeneity but had an impact on unburned fuels. Optical experiments showed that the lubricant did not influence spray but did influence wall film formation during the injection period, which is a major factor affecting particulate matter generation. Particulate emissions indicated that lubricant included in the wall film significantly affected PN emissions depending on injection conditions. Additionally, the wall film influenced by the lubricant affected the overall particle size and its distribution.


Author(s):  
Ratnak Sok ◽  
Jin Kusaka

Abstract Injected gasoline into the O2-depleted environment in the recompression stroke can be converted into light hydrocarbons due to thermal cracking, partial oxidation, and water-gas shift reaction. These reformate species influence the combustion phenomena of gasoline direct injection homogeneous charge compression ignition (GDI-HCCI) engines. In this work, a production-based single-cylinder research engine was boosted to reach IMEPn = 0.55 MPa in which its indicated efficiency peaks at 40–41%. Experimentally, the main combustion phases are advanced under single-pulse direct fuel injection into the negative valve overlap (NVO) compared with that of the intake stroke. NVO peak in-cylinder pressures are lower than that of motoring, which emphasizes that endothermic reaction occurs during the interval. Low O2 concentration could play a role in this evaporative charge cooling effect. This phenomenon limits the oxidation reaction, and the thermal effect is not pronounced. For understanding the recompression reaction phenomena, 0D simulation with three different chemical reaction mechanisms is studied to clarify that influences of direct injection timing in NVO on combustion advancements are kinetically limited by reforming. The 0D results show the same increasing tendencies of classical reformed species of rich-mixture such as C3H6, C2H4, CH4, CO, and H2 as functions of injection timings. By combining these reformed species into the main fuel-air mixture, predicted ignition delays are shortened. The effects of the reformed species on the main combustion are confirmed by 3D-CFD calculation, and the results show that OH radical generation is advanced under NVO fuel injection compared with that of intake stroke conditions thus earlier heat release and cylinder pressure are noticeable. Also, parametric studies on injection pressure and double-pulse injections on engine combustion are performed experimentally.


Author(s):  
Zuohua Huang ◽  
Seiichi Shiga ◽  
Takamasa Ueda ◽  
Nobuhisa Jingu ◽  
Hisao Nakamura ◽  
...  

Abstract Effect of fuel injection timing relative to ignition timing on natural gas direct-injection combustion was studied by using a rapid compression machine. The ignition timing was fixed at 80 ms from the compression start. When the injection timing was relatively earlier (injection start at 60 ms), the heat release pattern showed slower burn in the initial stage and faster burn in the late stage, which is similar to that of flame propagation of a premixed gas. In contrast to this, when the injection timing was relatively later (injection start at 75 ms), the heat release rate showed faster burn in the initial stage and slower burn in the late stage, which is similar to that of diesel combustion. The shortest duration was realized at the injection end timing of 80 ms (the same timing as the ignition timing) over the wide range of equivalence ratio. The degree of charge stratification and the intensity of turbulence generated by the fuel jet is considered to cause these behaviors. Earlier injection leads to longer duration of the initial combustion, whereas the later injection does longer duration of the late combustion. Earlier injection showed relatively lower CO emission while later injection produces relatively lower NOx emission. It was suggested that earlier injection leads to lower mixture stratification combustion and later injection leads to higher mixture stratification combustion. Combustion efficiency maintained high value over the wide range of equivalence ratio.


Author(s):  
Sok Ratnak ◽  
Jin Kusaka ◽  
Yasuhiro Daisho ◽  
Kei Yoshimura ◽  
Kenjiro Nakama

Gasoline Direct Injection Homogeneous Charge Compression (GDI-HCCI) combustion is achieved by closing early the exhaust valves for trapping hot residual gases combined with direct fuel injection. The combustion is chemically controlled by multi-point auto-ignition which its main combustion phase can be controlled by direct injection timing of fuel. This work investigates the effect of single pulse injection timing on a supercharged GDI-HCCI combustion engine by using a four-stroke single cylinder engine with a side-mounted direct fuel injector. Injection of primary reference fuel PRF90 under the near-stoichiometric-boosted condition is studied. The fuel is injected during negative valve overlap (NVO) or recompression period for fuel reformation under low oxygen concentration and the injection is retarded to intake stroke for the homogeneous mixture. It is found that the early fuel injection in NVO period advances the combustion phasing compared with the retarded injection in the intake stroke. Noticeable slower combustion rate from intake stroke fuel injection is obtained compared with the NVO injection due to charge cooling effect. Zero-dimensional combustion simulations with multiple chemical reaction mechanisms are simulated to provide chemical understanding from the effect of fuel injection timing on intermediate species generations. The species such as C2H4, C3H6, CH4, and H2 are found to be formed during the NVO injection period from the calculations. The effects of single pulse injection timings on combustion characteristics such pressure rise rate, combustion stability, and emissions are also discussed in this study.


2002 ◽  
Vol 125 (1) ◽  
pp. 351-357 ◽  
Author(s):  
Y. Kidoguchi ◽  
M. Sanda ◽  
K. Miwa

Effects of combustion chamber geometry and initial mixture distribution on the combustion process were investigated in a direct-injection diesel engine. In the engine experiment, a high squish combustion chamber with a squish lip could reduce both NOx and particulate emissions with retarded injection timing. According to the results of CFD computation and phenomenological modeling, the high squish combustion chamber with a central pip is effective to keep the combusting mixture under the squish lip until the end of combustion and the combustion region forms rich and highly turbulent atmosphere. This kind of mixture distribution tends to reduce initial burning, resulting in restraint of NOx emission while keeping low particulate emission.


2011 ◽  
Vol 130-134 ◽  
pp. 796-799
Author(s):  
Ming Ming Wu ◽  
Yan Xiang Yang ◽  
Da Guang Xi ◽  
Ping Zhang ◽  
Zhong Guo Jin

This paper presents the feasibility of semi-direct injection on a 50cm3, two-stroke motorcycle gasoline engine, which is applied FAI semi-direct injection fuel system. The structure and fuel injection system is improved based on the original carburetor engine and the FAI injector is easily installed. The results of laboratory and drive test show that, compared with the original carburetor fuel system, through optimization calibration of fuel injection timing and injection quantity can improve power performance and fuel economy.


Author(s):  
Doohyun Kim ◽  
Angela Violi ◽  
André Boehman

Increased Particulate Matter (PM) emissions from Gasoline Direct Injection (GDI) engines compared to conventional Port Fuel Injection (PFI) engines have been raising concerns because of the PM’s detrimental health effects and the stringent emissions regulations. One of the widely accepted hypotheses is that local rich pockets inside the combustion chamber are the primary reason for the increased PM emissions. In this paper, we investigate the effects of injection strategies on the charge composition and local thermodynamic conditions of a light duty GDI engine, and determine their impact on PM emissions. The operation of a 1.6L GDI engine is simulated using a 3-D Computational Fluid Dynamics (CFD) code. Combustion characteristics of a 3-component gasoline surrogate (n-heptane/iso-octane/toluene) are analyzed and the effects of injection timing (300° vs 240° vs 180° BTDC) and injected fuel mass (globally stoichiometric vs fuel rich) are explored at 2000 rpm, 9.5 bar BMEP condition, focusing on the homogeneity of the charge and the formation of the gaseous species that are soot precursors. The results indicate that when the physical time for air/fuel mixing is not long enough, fuel-rich pockets are present until combustion occurs, where high concentrations of soot precursors are found, such as acetylene and pyrene. In addition, simulation results indicate that the location of wetted surface as well as the in-cylinder flow structure induced by the fuel jet hitting the piston bowl is significantly influenced by varying the injection timing, which affects subsequent air/fuel mixing. When the injected fuel mass is increased, the equivalence ratio distribution inside the combustion chamber shifts toward fuel-rich side, generating more mixtures with Φ > 1.5, where formation of acetylene and pyrene are favored.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Shengli Wei ◽  
Zhiqing Yu ◽  
Zhilei Song ◽  
Fan Yang ◽  
Chengcheng Wu

Abstract This article presents a numerical investigation carried out to determine the effects of second and third injection timing on combustion characteristics and mixture formation of a gasoline direct injection (GDI) engine by comparing conical spray against multihole spray. The results showed that at the engine 80% full load of 2000 r/min, the difference in mixture distribution between the two sprays was obvious with double and triple injection strategies. With the second injection timing from 140 deg CA delay to 170 deg CA, the in-cylinder pressure, the in-cylinder temperature, and the heat release rate of the conical spray increased by 20.8%, 9.8%, and 30.7% and that of the multihole spray decreased by 30.7%, 13.6%, and 37.8%. The delay of the injection time reduced the performance of the engine with the multihole spray, and the performance of the multihole spray was obviously in the simulation of the triple injection strategy. However, for the conical spray, the application of the triple injection strategy increased the temperature and the pressure compared with the double injection strategy.


Sign in / Sign up

Export Citation Format

Share Document