Theoretical Analysis of Thin Film Evaporation in the Wicks of Loop Heat Pipes

Author(s):  
Bingyao Lin ◽  
Nanxi Li ◽  
Shiyue Wang ◽  
Leren Tao ◽  
Guangming Xu ◽  
...  

Abstract In this paper, a thin film evaporation model that includes expressions for energy, mass and momentum conservation was established through the augmented Young-Laplace model. Based on this model, the effects of pore size and superheating on heat transfer during thin film evaporation were analyzed. The influence of the wick diameter of the loop heat pipe (LHP) on the critical heat flux of the evaporator is analyzed theoretically. The results show that pore size and superheating mainly influence evaporation through changes in the length of the transition film and intrinsic meniscus. The contribution of the transition film area is mainly reflected in the heat transfer coefficient, and the contribution of the intrinsic meniscus area is mainly apparent in the quantity of heat that is transferred. When an LHP evaporator is operating in a state of surface evaporation, a higher heat transfer coefficient can be achieved using a smaller pore size.

Author(s):  
Chunji Yan ◽  
Xinxiang Pan ◽  
Xiaowei Lu

A mathematic model, which can be used to predict the evaporation and fluid flow in thin film region, is developed based on momentum and energy conservations and the augmented Young-Laplace equation in this paper. In the model the variations of the enthalpy and kinetics energy of the thin-film along the evaporating region are considered. By theoretical analysis, we have obtained the governing equation for thin film profile. The fluid flow and phase-change heat transfer in an evaporating extended meniscus are numerically studied. The differences between the model considering momentum conservation only and including both momentum and energy conservations are compared. It is found that the maximum heat flux of the thin-film evaporation by using two mathematical models obtained has no change, but when considering the momentum and energy conservations the total heat transfer rate unit width along the thin-film evaporation region is greater than that of only including momentum equation.


Author(s):  
Solomon Adera ◽  
Rishi Raj ◽  
Evelyn N. Wang

Thermal management is increasingly becoming a bottleneck for a variety of high power density applications such as integrated circuits, solar cells, microprocessors, and energy conversion devices. The performance and reliability of these devices are usually limited by the rate at which heat can be removed from the device footprint, which averages well above 100 W/cm2 (locally this heat flux can exceed 1000 W/cm2). State-of-the-art air cooling strategies which utilize the sensible heat are insufficient at these large heat fluxes. As a result, novel thermal management solutions such as via thin-film evaporation that utilize the latent heat of vaporization of a fluid are needed. The high latent heat of vaporization associated with typical liquid-vapor phase change phenomena allows significant heat transfer with small temperature rise. In this work, we demonstrate a promising thermal management approach where square arrays of cylindrical micropillar arrays are used for thin-film evaporation. The microstructures control the liquid film thickness and the associated thermal resistance in addition to maintaining a continuous liquid supply via the capillary pumping mechanism. When the capillary-induced liquid supply mechanism cannot deliver sufficient liquid for phase change heat transfer, the critical heat flux is reached and dryout occurs. This capillary limitation on thin-film evaporation was experimentally investigated by fabricating well-defined silicon micropillar arrays using standard contact photolithography and deep reactive ion etching. A thin film resistive heater and thermal sensors were integrated on the back side of the test sample using e-beam evaporation and acetone lift-off. The experiments were carried out in a controlled environmental chamber maintained at the water saturation pressure of ≈3.5 kPa and ≈25 °C. We demonstrated significantly higher heat dissipation capability in excess of 100 W/cm2. These preliminary results suggest the potential of thin-film evaporation from microstructured surfaces for advanced thermal management applications.


Author(s):  
James A. Tallman ◽  
Rahul A. Bidkar

Low-leakage film-riding seals are a key enabling technology for utility-scale supercritical carbon dioxide (sCO2) power cycles. Fluid film-riding rotor-stator seals (operating with sCO2 as the working fluid) are designed to track rotor movements and provide effective sealing by maintaining a tight operating clearance (of the order of several microns) from the spinning rotor. Thin film-riding seals generate viscous shear heat during high-speed operation, and the reliable operation of such thin-film seals depends critically on the designer’s ability to control the thermal deformations of the seal/rotor bearing face, which in turn are tied to the designer’s ability to understand and predict the heat transfer across the seal bearing face. In this paper, we develop a simple axisymmetric thermal-mechanical model of a typical face seal to highlight how the uncertainty in heat transfer coefficient (HTC) on the seal bearing face drives uncertainty in seal deformation predictions, especially when the HTCs are an order of magnitude lower than those predicted with duct-based Dittus-Boelter correlations. This uncertainty in seal bearing face HTCs drives the need for an experimental quantification of HTCs in high-aspect ratio thin films associated with low-leakage film-riding seals. In this paper, we describe a non-rotating experimental test rig designed for estimating the HTCs on the seal bearing face using a shim-heater technique along with IR-camera-based temperature measurements. The experimental set-up consists of a thin metal shim (representing the seal bearing face) forming one wall of a pressurized duct with geometric similarity to a typical thin film of a face seal. Pressurized airflow past the shim is used to simulate the flow field expected in a non-rotating seal. The HTC test data for a non-rotating film (as against the actual seal film with rotating fluid) are lower than the actual seal, and establish a lower bound on the HTCs. This is especially useful for bounding the seal deformation uncertainty, which is vulnerable to the HTCs in the low-HTC regime. We present representative test data that is non-dimensionalized using radial-flow-based Reynolds number and compare these HTC estimates both with the predictions of Dittus-Boelter type correlations, and with the predictions of a 3D computational fluid dynamics (CFD) model. The purpose of the CFD model is to develop a HTC prediction tool for such thin-film surfaces, and the test data are used for validating this predictive model.


2010 ◽  
Vol 29-32 ◽  
pp. 132-137 ◽  
Author(s):  
Xue Jiang Lai ◽  
Rui Li ◽  
Yong Dai ◽  
Su Yi Huang

Flower baffle heat exchanger’s structure and design idea is introduced. Flower baffle heat exchanger has unique support structure. It can both enhance the efficiency of the heat transfer and reduce the pressure drop. Through the experimental study, under the same shell side flow, the heat transfer coefficient K which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. The heat transfer coefficient K which the distance between two flower baffles is 147mm is close to the one of which the distances between two flower baffles is 134mm. The shell volume flow V is higher, the incremental quantity of heat transfer coefficient K is more. The integrated performance K/Δp of flower baffle heat exchanger which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. Therefore, the best distance between two flower baffles exists between 134mm~147mm this experiment.


2020 ◽  
pp. 1-12
Author(s):  
Kan Li ◽  
Lin Chen ◽  
Feng Zhu ◽  
Yonggang Huang

Abstract Three-dimensional coil structures assembled by mechanically guided compressive buckling have shown potency on enabling efficient thermal impedance matching of thermoelectric devices at a small characteristic scale, which increases the efficiency of power conversion, and has the potential to supply electric power to flexible bio-integrated devices. The unconventional heat dissipation behavior at the side surfaces of the thin-film coil, which serves as a 'heat pump', is strongly dependent on the geometry and the material of the encapsulating dissipation layer (e.g., polyimide). The low heat transfer coefficient of the encapsulation layer, which may damp the heat transfer for a conventional thermoelectric device, usually limits the heat transfer efficiency. However, the unconventional geometry of the coil can take advantage of the low heat transfer coefficient to increase its hot-to-cold temperature difference, and this requires further thermal analysis of the coil in order to improve its power conversion efficiency. Another challenge for the coil is that the active thin-film thermoelectric materials employed (e.g., heavily doped Silicon) are usually very brittle, with the fracture strain less than 0.1% in general while the overall device may undergo large deformation (e.g., stretched 100%). Mechanic analysis is therefore necessary to avoid failure/fracture of the thermoelectric material. In this work, we study the effect of coil geometry on both thermal and mechanical behaviors by using numerical and analytical approaches, and optimize the coil geometry to improve the device performance, and to guide its design for future applications.


Author(s):  
Lei Wang ◽  
Weiyu Tang ◽  
Limin Zhao ◽  
Wei Li

Abstract An experimental investigation was conducted on falling film evaporation along two porous tubes, which were sintered by stainless-steel powder with a diameter of 0.45 and 1 um, respectively. The test section is a 2 m long sintered tube with an outer diameter of 25 mm and a wall thickness of 2 mm. During the experiment, the pressure inside the tube was maintained at 1 atm, the inlet temperature was 373 K, and mass flux ranged from 0.51 to 1.36 kg/ (m s). Conditions of the steam outside the pipe, which was the heat source, were fixed, while the fouling tests were carried out at a constant mass flow of 0.74 kg/ (m s) using high-concentration brine as work fluid. The overall heat transfer coefficient under different working conditions was tested and compared with the stainless steel smooth tube of the same dimensions. The heat transfer coefficient of the two porous stainless tubes are about 35% and 20% lower than that of the smooth one, showing an inferior effect because the steam in the pores of the pipe wall during the infiltration process will reduce the heat conductivity. The heat transfer coefficient of the smooth tube deteriorated severely due to the deposition of calcium carbonate, which had little effect on the sintered tubes. Besides, the fouling weight of porous tubes is 2.01 g and 0 g compared with 5.52 g of the smooth tube.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
A. J. Jiao ◽  
H. B. Ma ◽  
J. K. Critser

A mathematical model predicting the heat transport capability in a miniature flat heat pipe (FHP) with a wired wick structure was developed to analytically determine its maximum heat transport rate including the capillary limit. The effects of gravity on the profile of the thin-film-evaporation region and the distribution of the heat flux along a curved surface were investigated. The heat transfer characteristics of the thin-film evaporation on the curved surface were also analyzed and compared with that on a flat surface. Combining the analysis on the thin-film-condensation heat transfer in the condenser, the model can be used to predict the total temperature drop between the evaporator and condenser in the FHP. In order to verify the model, an experimental investigation was conducted. The theoretical results predicted by the model agree well with the experimental data for the heat transfer process occurring in the FHP with the wired wick structure. Results of the investigation will assist in the optimum design of the curved-surface wicks to enlarge the thin-film-evaporation region and a better understanding of heat transfer mechanisms in heat pipes.


Sign in / Sign up

Export Citation Format

Share Document