Fretting Fatigue - An Integral Simulation Approach to Strengthening by Shot Peening

Author(s):  
Patrick Gerken ◽  
Christoph H. Richter

Abstract Fretting fatigue is a limiting factor in blade attachment de sign for turbomachinery. Shot peening is known to be a strength increasing measure against fatigue. It is applied not only to free surfaces of components under fatigue but also to contacting surfaces subject to fretting fatigue. The present work examines the effect of shot peening on fretting fatigue resistance in fixtures of rotor blades. The chosen integral approach allows the consideration of shot peening and subsequent fretting loading in one simulation. Thus, the residual stresses and material strengthening as well as the surface wavi ness due to the shot peening process are included in the fretting fatigue simulation. To achieve reasonable computation times a 2D model, calibrated to a 3D unit cell model, is employed. A comparative study on fatigue endurance limits is presented for the cases with and without shot peening. With view to the differ ent failure mechanisms met in these two cases, an initiation eval uation is carried out with the Sines criterion for the un-peened condition; a fracture mechanics approach is shown to be neces sary for the evaluation of the shot peened condition.

2021 ◽  
Author(s):  
Patrick Gerken ◽  
Christoph H. Richter

Abstract Fretting fatigue is a limiting factor in blade attachment design for turbomachinery. Shot peening is known to be a strength increasing measure against fatigue. It is applied not only to free surfaces of components under fatigue but also to contacting surfaces subject to fretting fatigue. The present work examines the effect of shot peening on fretting fatigue resistance in fixtures of rotor blades. The chosen integral approach allows the consideration of shot peening and subsequent fretting loading in one simulation. Thus, the residual stresses and material strengthening as well as the surface waviness due to the shot peening process are included in the fretting fatigue simulation. To achieve reasonable computation times a 2D model, calibrated to a 3D unit cell model, is employed. A comparative study on fatigue endurance limits is presented for the cases with and without shot peening. With view to the different failure mechanisms met in these two cases, an initiation evaluation is carried out with the Sines criterion for the un-peened condition; a fracture mechanics approach is shown to be necessary for the evaluation of the shot peened condition.


2021 ◽  
Vol 506 ◽  
pp. 230192
Author(s):  
Yunxiang Chen ◽  
Jie Bao ◽  
Zhijie Xu ◽  
Peiyuan Gao ◽  
Litao Yan ◽  
...  

2011 ◽  
Vol 488-489 ◽  
pp. 759-762
Author(s):  
L.Y. Li ◽  
M.H. Aliabadi ◽  
Pi Hua Wen

A Meshfree approach for continuum damage modeling of 3D orthogonal woven composites is presented. Two different shape function constructions, Radial basis (RB) function and Moving kriging (MK) interpolation, are utilized corresponding with Galerkin method in the Meshfree approach. The failure of two different unit cell models, straight-edge and smooth fabric unit cell model respectively, is compared.


2018 ◽  
Vol 53 (11) ◽  
pp. 1425-1436
Author(s):  
PC Upadhyay ◽  
JP Dwivedi ◽  
VP Singh

Coefficients of thermal expansion of some uniaxially fiber-reinforced composites have been evaluated using three-phase unit-cell model. Results have been compared with the values predicted by two other models based on composite cylinders assembly (CCA), and also with some earlier reported experimental values. An extension of the two-phase unit-cell model has also been presented for the evaluation of thermal expansion coefficients of three-phase composites. The formulation has been used to evaluate the overall coefficients of thermal expansion of AS-graphite/epoxy system with a low modulus coating on the fibers. The results have been compared with the results obtained from the Sutcu's recursive concentric cylinders model for composites containing coated fibers. From the comparison of results of the unit-cell models (both, two-phase and three-phase) with the results obtained from some other models available in the literature, it is concluded that the overall thermal properties of fiber-reinforced composites evaluated by the unit-cell model can be used as effectively as by any other model.


2020 ◽  
Vol 142 ◽  
pp. 106004 ◽  
Author(s):  
Vicente Martín ◽  
Jesús Vázquez ◽  
Carlos Navarro ◽  
Jaime Domínguez

Sign in / Sign up

Export Citation Format

Share Document