Evaluating the Influence of Rotor-Casing Eccentricity on Turbine Efficiency Including Time-Resolved Flow Field Measurements

2021 ◽  
pp. 1-33
Author(s):  
Eric DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.

2021 ◽  
Author(s):  
Eric T. DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Andreas Krug ◽  
Peter Busse ◽  
Konrad Vogeler

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
O. Schennach ◽  
J. Woisetschläger ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani

This paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three-dimensional aerodynamics of the second vane for different clocking positions. To give an overview of the time-averaged flow field, five-hole probe measurements were performed upstream and downstream of the second stator. Furthermore in these planes additional unsteady measurements were carried out with laser Doppler velocimetry in order to record rotor phase-resolved velocity, flow angle, and turbulence distributions at two different clocking positions. In the planes upstream of the second vane, the time-resolved pressure field has been measured by means of a fast response aerodynamic pressure probe. This paper shows that the secondary flows of the second vane are significantly modified by the different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out, and a 0.6% variation in the second vane loss coefficient has been recorded among the different clocking positions.


2010 ◽  
Vol 51 (1) ◽  
pp. 51-63 ◽  
Author(s):  
Shiyao Bian ◽  
James F. Driscoll ◽  
Brian R. Elbing ◽  
Steven L. Ceccio

Author(s):  
Hideaki Tamaki ◽  
Shinya Goto ◽  
Masaru Unno ◽  
Akira Iwakami

The flow behind the variable area nozzle for radial turbines was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated: the smallest and the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak. In the flow field of the largest opening nozzle, the effect of wake s dominant. The effect of the clearance of the nozzle vane on the turbine performance was estimated by a 1D-model and the strong influence on the turbine efficiency was confirmed at smallest opening. The flow fields in the impeller downstream of the nozzle vane at the smallest opening with and without the nozzle clearance were investigated with CFD. The setting angle of the nozzle vane without clearance was adjusted to match the operating point of the turbine with the nozzle clearance. In order to extract the specific work from the impeller, the nozzle vane with the vane clearance requires the larger vane setting angle than that without clearance. The increase of the vane setting angle increases the incidence loss and deteriorates turbine efficiency.


Author(s):  
Ronald Mailach ◽  
Ingolf Lehmann ◽  
Konrad Vogeler

In this two-part paper results of the periodical unsteady flow field within the third rotor blade row of the four-stage Dresden Low-Speed Research Compressor are presented. The main part of the experimental investigations was performed using Laser-Doppler-Anemometry. Results of the flow field at several spanwise positions between midspan and rotor blade tip will be discussed. In addition time-resolving pressure sensors at midspan of the rotor blades provide information about the unsteady profile pressure distribution. In part II of the paper the flow field in the rotor blade tip region will be discussed. The experimental results reveal a strong periodical interaction of the incoming stator wakes and the rotor blade tip clearance vortices. Consequently, in the rotor frame of reference the tip clearance vortices are periodical with the stator blade passing frequency. Due to the wakes the tip clearance vortices are separated into different segments. Along the mean vortex trajectory these parts can be characterised by alternating patches of higher and lower velocity and flow turning or subsequent counterrotating vortex pairs. These flow patterns move downstream along the tip clearance vortex path in time. As a result of the wake influence the orientation and extension of the tip clearance vortices as well as the flow blockage periodically vary in time.


Author(s):  
Hongwei Ma ◽  
Jun Zhang ◽  
Jinghui Zhang ◽  
Zhou Yuan

This paper presents an experimental investigation of effects of grooved tip clearances on the flow field of a compressor cascade. The tests were performed in a low-speed large-scale cascade respectively with two tip clearance configurations, including flat tip and grooved tip with a chordwise channel on the blade top. The flow field at 10% chord downstream from the cascade trailing edge was measured at four incidence angles using a mini five-hole pressure probe. The static pressure distribution was measured on the tip endwall. The results show that the pressure gradient from the pressure side to the suction side on the blade tip is reduced due to the existence of the channel. As a result, the leakage flow is weakened. The high-blockage and high-loss region caused by the leakage flow is narrower with the grooved tip. In the meantime, the leakage flow migrates to lower spanwise position. The combined result is that the flow capacity in the tip region is improved at the incidence angles of 0° and 5° with the grooved tip. However, the loss is slightly greater than that with the flat tip at all the incidence angles.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
P. Palafox ◽  
M. L. G. Oldfield ◽  
J. E. LaGraff ◽  
T. V. Jones

New, detailed flow field measurements are presented for a very large low-speed cascade representative of a high-pressure turbine rotor blade with turning of 110deg and blade chord of 1.0m. Data were obtained for tip leakage and passage secondary flow at a Reynolds number of 4.0×105, based on exit velocity and blade axial chord. Tip clearance levels ranged from 0% to 1.68% of blade span (0% to 3% of blade chord). Particle image velocimetry was used to obtain flow field maps of several planes parallel to the tip surface within the tip gap, and adjacent passage flow. Vector maps were also obtained for planes normal to the tip surface in the direction of the tip leakage flow. Secondary flow was measured at planes normal to the blade exit angle at locations upstream and downstream of the trailing edge. The interaction between the tip leakage vortex and passage vortex is clearly defined, revealing the dominant effect of the tip leakage flow on the tip end-wall secondary flow. The relative motion between the casing and the blade tip was simulated using a motor-driven moving belt system. A reduction in the magnitude of the undertip flow near the end wall due to the moving wall is observed and the effect on the tip leakage vortex examined.


Author(s):  
O. Schennach ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani ◽  
J. Woisetschla¨ger

The paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three dimensional flow field downstream of the high pressure turbine for different vane clocking positions. To give an overview of the time averaged flow field, measurements by means of a pneumatic five hole probe were performed upstream and downstream of the second stator. Furthermore in this planes additional unsteady measurements were carried out with Laser Doppler Velocimetry in order to record rotor phase resolved velocity, flow angle and turbulence distributions at two different clocking positions. In the measurement plane upstream the second vane the time resolved pressure field has been analyzed by means of a Fast Response Aerodynamic Pressure Probe. The paper shows that the secondary flows of the second vane are significantly modified for different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out.


Sign in / Sign up

Export Citation Format

Share Document