A predictive model for galling phenomenon and its applicability for deep drawing processes

2021 ◽  
pp. 1-31
Author(s):  
DineshKumar Karupannasamy ◽  
V.Kailas Satish ◽  
S. Shankar ◽  
Sasikumar KSK

Abstract Galling is a recurring phenomenon in deep drawing processes which requires frequent maintenance of tools to improve the product surface quality. Adhesive transfer of softer material on the hard tool surface results in sharp features which causes surface roughening of the dies and deterioration of deep drawn products. In this article, an adhesive wear model based on deterministic approach is developed to predict the galling behavior in a deep drawing process. The model uses the surface topography, material properties and contact conditions to predict the surface roughening of tool surfaces under perfectly plastic conditions. The adhesive transfer of material is considered by the growth of the asperities based on its geometry for the increase in height and radial direction by preserving the original shape and volume consistency. The results of the multi-asperity models shows the growth of transfer layer and its effects due to load, sliding cycle, sliding distance and affinity of the materials. The results shows the influence of the above-said parameters and its applicability for deep drawing process conditions. The simulated results shows an 85% level of confidence in comparison with the experiments from literature for the prediction of the surface evolution due to galling mechanism.

Author(s):  
Francisco J. Colorado Alonso ◽  
Hugo I. Medelli´n Castillo ◽  
Pedro de J. Garci´a Zugasti ◽  
Dirk F. de Lange

The deep drawing process is widely used in industry because it allows the production of parts with reduced weight and good mechanical properties. However, the deep drawing process of non-cylindrical shapes still relies on experimental and trial and error methods, leading to high costs and long development times. The deformation mechanism of non-cylindrical cup drawing is theoretically very complex because of the large elasto-plastic stress and strain, and contact conditions between the tools and the sheet metal involved. In particular, several attempts have been tried in the past to perform theoretical and numerical analysis of rectangular cups. This paper presents an analysis of the allowable deep drawing height (DDH) of rectangular cups. The aim of this paper is twofold: 1) to analyze and estimate the allowable DDH of rectangular parts using theoretical, numerical (FEM) and experimental methods, and 2) identify the theoretical expression that predicts with the highest accuracy the allowable DDH of rectangular parts. A new theoretical expression for predicting this DDH is also proposed. To perform the study FEM is used together with the experimental data from industrial parts. The results show the accuracy of each theoretical expression in predicting the allowable DDH of rectangular parts.


2020 ◽  
Vol 4 (4) ◽  
pp. 122
Author(s):  
Peter Birnbaum ◽  
Enrique Meza-García ◽  
Pierre Landgraf ◽  
Thomas Grund ◽  
Thomas Lampke ◽  
...  

Hot formed sheet components made of Martensitic Stainless Steels (MSS) can achieve ultra-high strengths in combination with very high corrosion resistance. This enables to manufacture complex lightweight sheet components with longer lifespan. Nevertheless, the hot formability of MSS sheets has not been accurately evaluated considering high temperatures and complex stress and strain states. In this work, the hot sheet formability of three MSS alloys under thermomechanical process conditions was investigated. Initially, mechanical properties of this sheet material were determined by uniaxial tensile test. Finite Element Method (FEM) simulation of a hot deep drawing process was performed under consideration of thermo physical calculated material models using the software JMatPro® and Simufact Forming® 15.0. The resulting strains and cooling rates developed locally in the work piece during the forming process were estimated. The numerical results were validated experimentally. Round cups were manufactured by hot deep drawing process. The resulting maximum drawing depth and hardness were measured. In general, all three alloys developed very good formability at forming temperatures between 700 and 900 °C and increased hardness values. However, they are highly susceptible to chemical composition, austenitization temperature, dwell time, and flange gap. A statistic approach is given to explain the correlation between hardness and its influencing factors.


2014 ◽  
Author(s):  
Jung Soo Nam ◽  
Sang Won Lee ◽  
Hong Seok Kim

In this study, the size dependence of metal sheet on the plastic deformation behavior was investigated in microscale deep drawing process. In order to perform deep drawing experiments, a tooling system was first developed. Then, a series of microscale deep drawing experiments were performed in various process conditions. The blank holder gap between the blank and blankholder was controlled to eliminate the possible defect such as wrinkling. In particular, the effects of feature size were analyzed by comparing the normalized deformation loads at different values of the scale factor λ. It was found that the maximum value of the normalized deformation load and the failure instant were strongly influenced by the feature size of metal sheet.


2011 ◽  
Vol 462-463 ◽  
pp. 200-206 ◽  
Author(s):  
Farzad Moayyedian ◽  
Mehran Kadkhodayan

This paper deals with two-dimensional plane stress wrinkling model of elastic/plastic annular plate. Based on energy method and nonlinearity of strain-displacement law, a bifurcation functional in polar coordinate is derived analytically. This technique leads to the critical conditions for the onset of the elastic/plastic wrinkling of the flange during the deep-drawing process. Tresca yield criterion along with deformation theory of plasticity are utilized and the material of the plate is assumed to behave perfectly plastic. Moreover, the influence of the blankholder upon wrinkling and on the number of the generated waves is quantitatively predicted by the suggested scheme. The main advantage of the proposed solution is its better agreement with the experimental and analytical results found by the other resarchers.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

1993 ◽  
Vol 115 (2) ◽  
pp. 224-229 ◽  
Author(s):  
K. Yamaguchi ◽  
K. Kanayama ◽  
M. H. Parsa ◽  
N. Takakura

A new deep drawing process of sheet metals is developed to facilitate small-lot production of deep cups with large drawing ratio. In this process, unlike the conventional deep drawing method, a few drawn cups are always stacked on the punch and used as a part of punch for the subsequent deep drawing of a given blank. Before drawing a new blank, a drawn cup which is in contact with the punch is stripped off. The repetition of such stripping and drawing operations makes it possible to carry out both the first-stage drawing and the subsequent slight redrawings in one drawing operation using only one pair of punch and die. In this paper, this new deep drawing process is applied to the production of tapered cups and the main feature of the process is shown.


Sign in / Sign up

Export Citation Format

Share Document