scholarly journals Experimental and Numerical Assessment of the Hot Sheet Formability of Martensitic Stainless Steels

2020 ◽  
Vol 4 (4) ◽  
pp. 122
Author(s):  
Peter Birnbaum ◽  
Enrique Meza-García ◽  
Pierre Landgraf ◽  
Thomas Grund ◽  
Thomas Lampke ◽  
...  

Hot formed sheet components made of Martensitic Stainless Steels (MSS) can achieve ultra-high strengths in combination with very high corrosion resistance. This enables to manufacture complex lightweight sheet components with longer lifespan. Nevertheless, the hot formability of MSS sheets has not been accurately evaluated considering high temperatures and complex stress and strain states. In this work, the hot sheet formability of three MSS alloys under thermomechanical process conditions was investigated. Initially, mechanical properties of this sheet material were determined by uniaxial tensile test. Finite Element Method (FEM) simulation of a hot deep drawing process was performed under consideration of thermo physical calculated material models using the software JMatPro® and Simufact Forming® 15.0. The resulting strains and cooling rates developed locally in the work piece during the forming process were estimated. The numerical results were validated experimentally. Round cups were manufactured by hot deep drawing process. The resulting maximum drawing depth and hardness were measured. In general, all three alloys developed very good formability at forming temperatures between 700 and 900 °C and increased hardness values. However, they are highly susceptible to chemical composition, austenitization temperature, dwell time, and flange gap. A statistic approach is given to explain the correlation between hardness and its influencing factors.

2013 ◽  
Vol 652-654 ◽  
pp. 1971-1975
Author(s):  
Pan Liu ◽  
Tae Wan Ku ◽  
Beom Soo Kang

Multi-stage deep drawing process for rectangular cups with extreme aspect ratio using finite element analysis is performed. The process is mainly consists of four forming stages including blanking, drawing, ironing and trimming. However, main deformation of the rectangular cup is completed during the drawing-ironing procedure. Tool design and blank modification for the multi-stage deep drawing process are presented. To consider the deep drawing and the ironing operations, the multi-stage deep drawing process is applied to obtain the rectangular cup by using each numerical simulation models from first to fifth drawing. Based on the design results of the initial blank, the multi-stage deep drawing process is performed, but it is shown that severe earing phenomenon is occurred at the upper flange part. To solve the severe deformation at the upper flange due to normal anisotropy of the used sheet material, initial blank modification is carried out. The simulation results for the rectangular cup are compared with the final configuration before and after the modification of the blank shape. The predicted result is confirmed that the modified blank shape not only improve the quality of a deep-drawn product but also reduce the cost of production.


2014 ◽  
Author(s):  
Jung Soo Nam ◽  
Sang Won Lee ◽  
Hong Seok Kim

In this study, the size dependence of metal sheet on the plastic deformation behavior was investigated in microscale deep drawing process. In order to perform deep drawing experiments, a tooling system was first developed. Then, a series of microscale deep drawing experiments were performed in various process conditions. The blank holder gap between the blank and blankholder was controlled to eliminate the possible defect such as wrinkling. In particular, the effects of feature size were analyzed by comparing the normalized deformation loads at different values of the scale factor λ. It was found that the maximum value of the normalized deformation load and the failure instant were strongly influenced by the feature size of metal sheet.


2021 ◽  
pp. 1-31
Author(s):  
DineshKumar Karupannasamy ◽  
V.Kailas Satish ◽  
S. Shankar ◽  
Sasikumar KSK

Abstract Galling is a recurring phenomenon in deep drawing processes which requires frequent maintenance of tools to improve the product surface quality. Adhesive transfer of softer material on the hard tool surface results in sharp features which causes surface roughening of the dies and deterioration of deep drawn products. In this article, an adhesive wear model based on deterministic approach is developed to predict the galling behavior in a deep drawing process. The model uses the surface topography, material properties and contact conditions to predict the surface roughening of tool surfaces under perfectly plastic conditions. The adhesive transfer of material is considered by the growth of the asperities based on its geometry for the increase in height and radial direction by preserving the original shape and volume consistency. The results of the multi-asperity models shows the growth of transfer layer and its effects due to load, sliding cycle, sliding distance and affinity of the materials. The results shows the influence of the above-said parameters and its applicability for deep drawing process conditions. The simulated results shows an 85% level of confidence in comparison with the experiments from literature for the prediction of the surface evolution due to galling mechanism.


Author(s):  
K Krachenfels ◽  
B Rothammer ◽  
R Zhao ◽  
S Tremmel ◽  
M Merklein

2020 ◽  
Vol 856 ◽  
pp. 143-151
Author(s):  
Tanongsak Bunyan ◽  
Suthep Yiemchaiyaphum ◽  
Sansot Panich

Nowadays, the industry has been growing interest in lightweight material for automotive and cookware manufacturing. The formability of sheet material is an important issue in these industries. The wrinkling behavior is one of the most failure in sheet metal forming and is often occurred in deep drawing process in cookware manufacturing. In this work, the developed wrinkling limit curves (WLCs) using experimental and numerical simulation of a modified Yoshida buckling test were precisely used to predict the wrinkling behavior of rectangular cup deep drawing for aluminum alloy sheets grade AA5054-O and AA5052-H32. The Industrial parts, the rectangular cup deep drawing was firstly performed for both investigated aluminum sheets for obtaining the wrinkling initiation on the side wall area of deep drawing parts. Subsequently, the experimental formed parts were carefully measured the draw-in of deformed blank sheets and drawing depth to validate the finite element (FE) model. Then, the FE simulation of the corresponding drawing tests were calculated, by which were implemented with the Hill’48 yield criterion and Swift hardening law to descript anisotropic plastic deformation. As a result, the local principle Major and Minor principle strains of observed wrinkle areas were gathered in the side wall area of the rectangular cup deep drawing test. Finally, the developed WLCs of aluminum alloy sheets were applied to predict the wrinkling formation of the formed deep drawing parts. Comparatively, the influence of different aluminum alloy grades on the WLCs and wrinkling behavior were explicitly investigated.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1536 ◽  
Author(s):  
Enrique Meza-García ◽  
Peter Birnbaum ◽  
Pierre Landgraf ◽  
Thomas Grund ◽  
Thomas Lampke ◽  
...  

The deep drawability of three Martensitic Stainless Steels (MSS) alloys under conventional press hardening thermomechanical process conditions was investigated. The three alloys differ in the content of the main elements C and Cr. Firstly, the metallurgical properties of the alloys were determined, i.e., the phase mass fraction diagrams and the concentration of alloying elements in solid solution at the austenitic temperatures with help of the JMatPro® software version 7.0. Derived from this analysis, specific thermomechanical process parameters were defined to evaluate experimentally and numerically the hot sheet formability of the alloys during the deep drawing process. The hot deep drawability of the MSS alloys was experimentally assessed. The hot deep drawability was evaluated with the resulting maximum drawing depth values. In general, all three alloys developed very good formability at forming temperatures between 700 and 900 °C. However, they are susceptible to chemical composition, austenization temperature, dwell time, and flange gap. The hot formability behavior of the alloys as well as the resulting hardness showed very good concordance with the calculated metallurgical values. Finally, a numerical analysis was conducted using Simufact Forming® 15.0 software. The interval time during hot blank transfer to the tool determines the initial and final forming temperature. The effect of the time interval on the forming temperature was analyzed numerically and validated experimentally. It was also possible to determine the maximum level of plastic strain in the deep drawn cup.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


Author(s):  
Hamidreza Gharehchahi ◽  
Mohammad Javad Kazemzadeh-Parsi ◽  
Ahmad Afsari ◽  
Mehrdad Mohammadi

Sign in / Sign up

Export Citation Format

Share Document