A study of effects of tooth surface wear on time-varying mesh stiffness of external spur gear considering wear evolution process

2021 ◽  
Vol 155 ◽  
pp. 104055
Author(s):  
Wei Chen ◽  
Yulong Lei ◽  
Yao Fu ◽  
Liguo Hou
2021 ◽  
pp. 1-16
Author(s):  
Siyu Wang ◽  
Rupeng Zhu

Abstract Based on “slice method”, the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elasto-hydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.


2019 ◽  
Vol 97 (2) ◽  
pp. 1403-1424 ◽  
Author(s):  
Guanghui Liu ◽  
Jun Hong ◽  
Robert G. Parker

2020 ◽  
Vol 12 (6) ◽  
pp. 168781402093750
Author(s):  
Hao Dong ◽  
Jianwen Zhang ◽  
Libang Wang

In order to study the influence of tooth surface friction on the non-linear bifurcation characteristics of multi-clearance gear drive system, a 6 degree-of-freedom bending torsional coupled vibration model was established. The time-varying mesh stiffness, backlash, support clearance and damping were considered comprehensively in this non-linear vibration model. Loaded tooth contact analysis was used to calculate the time-varying mesh stiffness. Based on the elasto-hydrodynamic lubrication, the time-varying friction coefficient was calculated. Runge–Kutta numerical method was used to solve the dimensionless dynamic differential equation. Using phase diagram, Poincaré diagram, time history diagram, and spectrum diagram, the influence of tooth surface friction on bifurcation characteristics was studied. The results show that the system undergoes a change from 1-periodic motion, multi-periodic motion, to chaotic motion through bifurcation and catastrophe when the speed changes independently. When the friction coefficient of tooth surface changes from 0, 0.05 to 0.09, the chaotic motion of the system is suppressed. Similarly, with the increase in tooth friction, the chaotic motion characteristics are suppressed. Tooth surface friction is the main factor affecting chaotic motion. With the increase in friction coefficient of tooth surface, the chaos characteristic does not change obviously and the vibration amplitude decreases slightly.


Author(s):  
Hui Ma ◽  
Jian Yang ◽  
Rongze Song ◽  
Suyan Zhang ◽  
Bangchun Wen

Considering tip relief, a finite element model of a spur gear pair in mesh is established by ANSYS software. Time-varying mesh stiffness under different amounts of tip relief is calculated based on the finite element model. Then, a finite element model of a geared rotor system is developed by MATLAB software considering the effects of time-varying mesh stiffness and constant load torque. Emphasis is given to the effects of tip relief on the lateral–torsional coupling vibration responses of the system. The results show that as the amount of tip relief increases, the saltation of time-varying mesh stiffness reduces at the position of approach action and transition mesh region from the single tooth to double tooth. A number of primary resonances and some super-harmonic of gears 1 and 2 are excited by time-varying mesh stiffness in amplitude frequency responses. As the amount of tip relief increases, some super-harmonic responses change due to the variation in the higher frequency components of time-varying mesh stiffness. After tip relief, the vibration and meshing force decrease obviously at lower mesh frequency range except at some resonance frequencies; however, tip relief is not effective in reducing the vibration at higher mesh frequency range. The amplitude fluctuation of the vibration acceleration reduces evidently after considering tip relief, which is not remarkable with the increase of meshing frequency.


Transport ◽  
2010 ◽  
Vol 25 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Viktor Skrickij ◽  
Marijonas Bogdevičius

Vehicle gearbox dynamics is characterized by time varying mesh stiffness. The paper presents a survey of methods used for determining mesh stiffness and the analysis of the centre distance influence on it. The refined mathematical transmission model presenting the centre distance as a variable is presented. The centre distance error as well as backlash and bearing flexibility is defined and the influence of these factors on mesh stiffness and spur gear dynamics is investigated. The results obtained from this paper may be used in gear‐box diagnostics.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881929 ◽  
Author(s):  
Zhe Yuan ◽  
Yuhou Wu ◽  
Ke Zhang ◽  
Mircea-Viorel Dragoi ◽  
Minghe Liu

Tooth wear is one of the main reasons that lead to gear failure. The amount of wear is nonlinearly related to temperature, lubrication, load, and various random factors of materials, with obvious randomness and slow time-varying characteristics. Wear is a nonstationary random process, which has no accurate mathematical model or accurate reliability estimation method. This article proposes a reliability model of spur gears which works under a nonstationary random process that exceeds the limit, and the time-varying wear reliability is studied based on the level crossing analysis method. The wear at tooth root is revised in the calculation under the nonstationary random process, and the reliability curves are obtained afterwards. An experiment is carried out on the spur gear meshing test rig, and the reliability model and wear performance are verified and analyzed. Results obtained with the proposed tooth surface wear reliability model match well with the experimental results. Therefore, this model is applicable for situations under a nonstationary random process. The new method makes contribution to the assessment of gear running status and is of great significance in the prediction of wear life under a nonstationary random process.


Sign in / Sign up

Export Citation Format

Share Document