A New Risk Assessment Model to Check Safety Threats to Long-Distance Pipelines

Author(s):  
Duhui Lu ◽  
Guangpei Cong ◽  
Bing Li

Abstract With the number of long-distance pipelines increasing in China, risk management has become important for controlling pipeline leakage. However, all the current assessment technologies are semi-quantitative and do not include inspection data. To address this problem, a new quantitative risk assessment model is proposed to guide decision-making on excavation inspection and maintenance. Based on previous failure cases, the model includes data about the surrounding soils as well as about the pipeline's protective layer, cathodic protection and thickness readings. Testing of the proposed model on previous failure cases shows that the new model can correctly assess the real leakage risk of a long-distance pipeline and support the quantitative integrity management of a long-distance pipeline during its whole service life.

2013 ◽  
Vol 19 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Song YANG ◽  
Shuqin WU ◽  
Ningqiu LI ◽  
Cunbin SHI ◽  
Guocheng DENG ◽  
...  

2001 ◽  
Vol 127 (2) ◽  
pp. 195-206 ◽  
Author(s):  
E. HARTNETT ◽  
L. KELLY ◽  
D. NEWELL ◽  
M. WOOLDRIDGE ◽  
G. GETTINBY

A quantitative risk assessment model investigating the risk of human infection with campylobacter from the consumption of chicken meat/products is currently being formulated. Here such an approach is used to evaluate the probability that a random bird, selected at slaughter from Great Britain's national poultry flock, will be campylobacter-positive. This is determined from the probability that a flock chosen at random contains at least one colonized bird and the within-flock prevalence of such a flock at slaughter. The model indicates that the probability bird chosen at random being campylobacter-positive at slaughter is 0·53. This probability value has associated uncertainty, the 5th percentile being 0·51 and the 95th percentile 0·55. The model predicts that delaying the age at first exposure to campylobacter can have a significant impact on reducing the probability of a bird being campylobacter-positive at slaughter. However, implementation of current biosecurity methods makes this difficult to achieve.


Author(s):  
Jerico Perez ◽  
David Weir ◽  
Caroline Seguin ◽  
Refaul Ferdous

To the end of 2012, Enbridge Pipelines employed an in-house developed indexed or relative risk assessment algorithm to model its liquid pipeline system. Using this model, Enbridge was able to identify risk control or treatment projects (e.g. valve placement) that could mitigate identified high risk areas. A changing understanding of the threats faced by a liquid pipeline system and their consequences meant that the model changed year over year making it difficult to demonstrate risk reduction accomplished on an annual basis using a relative scoring system. As the development of risk management evolved within the company, the expectations on the model also evolved and significantly increased. For example, questions were being asked such as “what risk is acceptable and what risk is not acceptable?”, “what is the true risk of failure for a given pipe section that considers the likelihood of all threats applicable to the pipeline”, and “is enough being done to reduce these risks to acceptable levels?” To this end, starting in 2012 and continuing through to the end of 2013, Enbridge Pipelines developed a quantitative mainline risk assessment model. This tool quantifies both threat likelihood and consequence and offers advantages over the indexed risk assessment model in the following areas: • Models likely worst case (P90) rupture scenarios • Enables independent evaluation of threats and consequences in order to understand the drivers • Produces risk assessment results in uniform units for all consequence criteria and in terms of frequencies of failure for likelihood • Aggregates likelihood and consequence at varying levels of granularity • Uses the risk appetite of the organization and its quantification allows for the setting of defined high, medium, and low risk targets • Quantifies the amount of risk in dollars/year facilitating cost-benefit analyses of mitigation efforts and risk reduction activities • Grounds risk assessment results on changes in product volume-out and receptor sensitivity • Balances between complexity and utility by using enough information and data granularity to capture all factors that have a meaningful impact on risk Development and implementation of the quantitative mainline risk assessment tool has had a number of challenges and hurdles. This paper provides an overview of the approach used by Enbridge to develop its quantitative mainline risk assessment model and examines the challenges, learnings and successes that have been achieved in its implementation.


Food Control ◽  
2020 ◽  
Vol 107 ◽  
pp. 106804
Author(s):  
Fernanda B. Campagnollo ◽  
Marianna M. Furtado ◽  
Beatriz S. Silva ◽  
Larissa P. Margalho ◽  
Joyce A. Carminati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document