Verification of a Specialized Hydrodynamic Simulation Code for Modeling Deflagration and Detonation of High Explosives

Author(s):  
Stephen Andrews ◽  
Tariq Aslam

Abstract A specialized hydrodynamic simulation code has been developed to simulate one-dimensional unsteady problems involving the detonation and deflagration of high explosives. To model all the relevant physical processes in these problems, a code is required to simulate compressible hydrodynamics, unsteady thermal conduction and chemical reactions with complex rate laws. Several verification exercises are presented which test the implementation of these capabilities. The code also requires models for physics processes such as equations of state and conductivity for pure materials and mixtures as well as rate laws for chemical reactions. Additional verification tests are required to ensure these models are implemented correctly. Though this code is limited in the types of problems it can simulate, its computationally efficient formulation allow it to be used in calibration studies for reactive burn models for high explosives.

Author(s):  
Robert M. Hazen

Earth's 4.5-billion-year history has witnessed a complex sequence of high-probability chemical and physical processes, as well as ‘frozen accidents’. Most models of life's origins similarly invoke a sequence of chemical reactions and molecular self-assemblies in which both necessity and chance play important roles. Recent research adds two important insights into this discussion. First, in the context of chemical reactions, chance versus necessity is an inherently false dichotomy—a range of probabilities exists for many natural events. Second, given the combinatorial richness of early Earth's chemical and physical environments, events in molecular evolution that are unlikely at limited laboratory scales of space and time may, nevertheless, be inevitable on an Earth-like planet at time scales of a billion years. This article is part of the themed issue ‘Reconceptualizing the origins of life’.


Radiocarbon ◽  
2011 ◽  
Vol 53 (4) ◽  
pp. 691-704 ◽  
Author(s):  
John Southon

Conventional radiocarbon calculations correct for isotopic fractionation using an assumed value of 2.0 for the fractionation of 14C relative to 13C. In other words, isotopic discrimination in physical and chemical processes is assumed to cause relative shifts in 14C/12C ratios that are exactly double those of 13C/12C. This paper analyzes a 1984 experiment that produced a value for the fractionation ratio in photosynthesis of 2.3, which is used to this day by some researchers in the fields of hydrology and speleothem geochemistry. While the value of 2.3 is almost certainly incorrect, theoretical work suggests that the true value may indeed deviate from 2.0, which would have significant implications for 14C calculations.


2016 ◽  
Vol 113 (24) ◽  
pp. E3322-E3331 ◽  
Author(s):  
George Cooper ◽  
Andro C. Rios

Biological polymers such as nucleic acids and proteins are constructed of only one—the d or l—of the two possible nonsuperimposable mirror images (enantiomers) of selected organic compounds. However, before the advent of life, it is generally assumed that chemical reactions produced 50:50 (racemic) mixtures of enantiomers, as evidenced by common abiotic laboratory syntheses. Carbonaceous meteorites contain clues to prebiotic chemistry because they preserve a record of some of the Solar System’s earliest (∼4.5 Gy) chemical and physical processes. In multiple carbonaceous meteorites, we show that both rare and common sugar monoacids (aldonic acids) contain significant excesses of the d enantiomer, whereas other (comparable) sugar acids and sugar alcohols are racemic. Although the proposed origins of such excesses are still tentative, the findings imply that meteoritic compounds and/or the processes that operated on meteoritic precursors may have played an ancient role in the enantiomer composition of life’s carbohydrate-related biopolymers.


2020 ◽  
Author(s):  
Wenzhi Ruan ◽  
Rony Keppens

<p>In order to study the evaporation of chromospheric plasma and the formation of hard X-ray (HXR) sources in solar flare events, we coupled an analytic energetic electron model with the multi-dimensional MHD simulation code MPI-AMRVAC. The transport of fast electrons accelerated in the flare looptop is governed by the test particle beam approach reported in Emslie et al. (1978), now used along individual field lines. Anomalous resistivity, thermal conduction, radiative losses and gravity are included in the MHD model. The reconnection process self-consistently leads to formation of a flare loop system and the evaporation of chromospheric plasma is naturally recovered. The non-thermal HXR emission is synthesized from the local fast electron spectra and local plasma density, and thermal bremsstrahlung soft X-ray (SXR) emission is synthesized based on local plasma density and temperature. We found that thermal conduction is  an efficient way to trigger evaporation flows. We also found that the generation of a looptop HXR source is a result of fast electron trapping, as evidenced by the pitch angle evolution. By comparing the SXR flux and HXR flux, we found that a possible reason for the “Neupert effect” is that the increase of non-thermal and thermal energy follows the same tendency.</p>


1984 ◽  
Vol 24 (01) ◽  
pp. 75-86 ◽  
Author(s):  
R.L. Braun ◽  
J.C. Diaz ◽  
A.E. Lewis

Abstract Lawrence Livermore Natl. Laboratory (LLNL) has developed a one-dimensional (1D) mathematical model to simulate modified in-situ (MIS) retorting of oil shale. In this paper we discuss application of the model to commercial-scale retorting conditions. The model was tested by comparing calculated values to those measured in experimental retort runs performed at LLNL. There was generally good agreement between the calculated and observed results for oil yield, temperature profiles, and the yields of most gas species. Retorting rates were generally overestimated by as much as 10%. The model is a useful tool for design and control of retort operations and to identify and interpret observations that differ from model predictions. The model was used to predict the results for MIS retorting on a commercial scale, focusing on larger retorts and larger shale particle sizes, focusing on larger retorts and larger shale particle sizes than could be investigated experimentally. Retort bed properties, particularly shale composition and particle size, play an important role in determining the recoverable fraction of oil. For a given shale composition, the inlet-gas properties can be selected to help control retort operations and to maximize oil yield. Extreme variations in oil shale grade that may be encountered as a function of depth can be dealt with by appropriate changes in the composition and flow rate of the inlet gas. In addition, we show that substituting oxygen diluted with steam or CO2 (for air or air diluted with steam) can make significant improvements in the heating value of the effluent gas. Finally, we demonstrate the feasibility of retorting through a substantial interval of very low-grade shale. Introduction LLNL has been developing technology applicable to the MIS process of extracting oil from oil shale.1,2 Our program has involved the experimental measurement of chemical reactions and reaction kinetics,3 the operation of pilot-scale retorts,4 and the development of a mathematical model of an MIS retort.5 The objective is to help establish the technical base required to evaluate and apply the MIS method on a commercial scale. A keystone of our program is the retort model, since it represents our cumulative knowledge of the chemical and physical processes involved in oil shale retorting. The retort model has been used in planning and interpreting pilot-scale retort experiments and has successfully predicted most of the results of those experiments.4 It has also been used in developing an operating strategy for a field MIS oil shale retorting experiment.6 The principal purpose of this work is to apply the retort model to a wide range of conditions for MIS retorting, focusing on larger retorts and larger shale particle sizes than can be investigated in a laboratory experiment. Before the results of those calculations are presented, the model is discussed in terms of its content and validity. Model Description The LLNL retort model is a transient, 1D treatment of a packed-bed retort. In developing the model, we adopted a mechanistic approach based on fundamental chemical and physical properties rather than empirical scaling of pilot retort experiments. The model contains no arbitrarily adjustable parameters. A complete mathematical description of the model has been given elsewhere.5 The important features, therefore, are reviewed here only briefly. Our model includes those processes believed to have the most important effects in either the hot-gas retorting mode or the forward combustion mode. The physical processes are axial convective transport of heat and mass, axial thermal dispersion, gas/solid heat transfer, intraparticle shale thermal conductivity, water vaporization and condensation, and wall heat loss. The chemical reactions within the shale particles are the release of bound water, pyrolysis of kerogen, coking of oil, pyrolysis of char, decomposition of carbonate materials, and gasification of residual organic carbon with CO2, H2O, and O2. The chemical reactions in the bulk-gas stream are the combustion and cracking of oil vapor, combustion of H2, CH4, CHx, and CO, and the water/gas shift. The model permits axial variations of initial shale composition, particle-size distribution, and bed void fraction. It also permits time-dependent variations of the composition, flow rate, and temperature of inlet gas. The governing equations for mass and energy balance are solved numerically by a semi-implicit, finite-difference method. The results of these calculations determine the oil yield, and the composition and temperature of both the gas stream and the shale particles as a function of time and location in the retort.


2012 ◽  
Vol 78 (4) ◽  
pp. 469-482 ◽  
Author(s):  
B. M. COWAN ◽  
S. Y. KALMYKOV ◽  
A. BECK ◽  
X. DAVOINE ◽  
K. BUNKERS ◽  
...  

AbstractElectron self-injection and acceleration until dephasing in the blowout regime is studied for a set of initial conditions typical of recent experiments with 100-terawatt-class lasers. Two different approaches to computationally efficient, fully explicit, 3D particle-in-cell modelling are examined. First, the Cartesian code vorpal (Nieter, C. and Cary, J. R. 2004 VORPAL: a versatile plasma simulation code. J. Comput. Phys.196, 538) using a perfect-dispersion electromagnetic solver precisely describes the laser pulse and bubble dynamics, taking advantage of coarser resolution in the propagation direction, with a proportionally larger time step. Using third-order splines for macroparticles helps suppress the sampling noise while keeping the usage of computational resources modest. The second way to reduce the simulation load is using reduced-geometry codes. In our case, the quasi-cylindrical code calder-circ (Lifschitz, A. F. et al. 2009 Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition. J. Comput. Phys.228(5), 1803–1814) uses decomposition of fields and currents into a set of poloidal modes, while the macroparticles move in the Cartesian 3D space. Cylindrical symmetry of the interaction allows using just two modes, reducing the computational load to roughly that of a planar Cartesian simulation while preserving the 3D nature of the interaction. This significant economy of resources allows using fine resolution in the direction of propagation and a small time step, making numerical dispersion vanishingly small, together with a large number of particles per cell, enabling good particle statistics. Quantitative agreement of two simulations indicates that these are free of numerical artefacts. Both approaches thus retrieve the physically correct evolution of the plasma bubble, recovering the intrinsic connection of electron self-injection to the nonlinear optical evolution of the driver.


Author(s):  
David Marten ◽  
Matthew Lennie ◽  
Georgios Pechlivanoglou ◽  
Christian Navid Nayeri ◽  
Christian Oliver Paschereit

The development of the next generation of large multi-megawatt wind turbines presents exceptional challenges to the applied aerodynamic design tools. Because their operation is often outside the validated range of current state of the art momentum balance models, there is a demand for more sophisticated, but still computationally efficient simulation methods. In contrast to the Blade Element Momentum Method (BEM) the Lifting Line Theory (LLT) models the wake explicitly by a shedding of vortex rings. The wake model of freely convecting vortex rings induces a time-accurate velocity field, as opposed to the annular averaged induction that is computed from the momentum balance, with computational costs being magnitudes smaller than those of a full CFD simulation. The open source code QBlade, developed at the Berlin Institute of Technology, was recently extended with a Lifting Line - Free Vortex Wake algorithm. The main motivation for the implementation of a LLT algorithm into QBlade is to replace the unsteady BEM code AeroDyn in the coupling to FAST to achieve a more accurate representation of the unsteady aerodynamics and to gain more information on the evolving rotor wake and flow-field structure. Therefore, optimization for computational efficiency was a priority during the integration and the provisions that were taken will be presented in short. The implemented LLT algorithm is thoroughly validated against other benchmark BEM, LLT and panel method codes and experimental data from the MEXICO and NREL Phase VI tests campaigns. By integration of a validated LLT code within QBlade and its database, the setup and simulation of LLT simulations is greatly facilitated. Simulations can be run from already existing rotor models without any additional input. Example use cases envisaged for the LLT code include; providing an estimate of the error margin of lower fidelity codes i.e. unsteady BEM, or providing a baseline solution to check the soundness of higher fidelity CFD simulations or experimental results.


Sign in / Sign up

Export Citation Format

Share Document