An Alternative Formulation for Modeling Self-Excited Vibrations of Drillstring with PDC Bits

Author(s):  
Kaixiao Tian ◽  
Emmanuel Detournay ◽  
He Zhang

Abstract This work describes an alternative formulation of a system of nonlinear state-dependent delay differential equations (SDDDEs) that governs the coupled axial and torsional vibrations of a 2 DOF drillstring model considering a Polycrystalline Diamond Compact (PDC) bit with realistic cutter layout. Such considerations result in up to 100 state-dependent delays due to the regenerative effect of the drilling process, which renders the computational efficiency of conventional solution strategies unacceptable. The regeneration of the rock surface, associated with the bit motion history, can be described using the bit trajectory function, the evolution of which is governed by a partial differential equation (PDE). Thus the original system of SDDDEs can be replaced by a nonlinear coupled system of a PDE and ordinary differential equations (ODEs). Via the application of the Galerkin method, this system of PDE-ODEs is transformed into a system of coupled ODEs, which can be readily solved. The algorithm is further extended to a linear stability analysis for the bit dynamics. The resulting stability boundaries are verified with time-domain simulations. The reported algorithm could, in principle, be applied to a more realistic drillstring model, which may lead to an in-depth understanding of the mitigation of self-excited vibrations through PDC bit designs.

2021 ◽  
Author(s):  
Kaixiao Tian ◽  
Emmanuel Detournay ◽  
He Zhang

Abstract This work describes an alternative formulation of a system of nonlinear state-dependent delay differential equations (SDDDEs) that governs the coupled axial and torsional vibrations of a 2 DOF drillstring model considering a Polycrystalline Diamond Compact (PDC) bit with realistic cutter layout. Such considerations result in up to 100 state-dependent delays due to the regenerative effect of the drilling process, which renders the computational efficiency of conventional solution strategies unacceptable. The regeneration of the rock surface, associated with the bit motion history, can be described using the bit trajectory function, the evolution of which is governed by a partial differential equation (PDE). Thus the original system of SDDDEs can be replaced by a nonlinear coupled system of a PDE and ordinary differential equations (ODEs). Via the application of the Galerkin method, this system of PDE-ODEs is transformed into a system of coupled ODEs, which can be readily solved. The algorithm is further extended to a linear stability analysis for the bit dynamics. The resulting stability boundaries are verified with time-domain simulations. The reported algorithm could, in principle, be applied to a more realistic drillstring model, which may lead to an in-depth understanding of the mitigation of self-excited vibrations through PDC bit designs.


1993 ◽  
Vol 115 (4) ◽  
pp. 247-256 ◽  
Author(s):  
A. K. Wojtanowicz ◽  
E. Kuru

An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter’s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verifications of the model. Qualitative verification shows that the model’s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model’s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.


2020 ◽  
Vol 31 (07) ◽  
pp. 2050093
Author(s):  
M. M. Khader ◽  
Mohammed M. Babatin

This paper is devoted to introduce an efficient solver using the Hermite collocation technique (HCT), of the coupled system of fractional differential equations (FDEs). The given systems are of basic importance in modeling various phenomena like Cascades and Compartment Analysis, Pond Pollution, Home Heating, Chemostats, and Microorganism Culturing, Nutrient Flow in an Aquarium, Biomass Transfer, Forecasting Prices, Electrical Network, Earthquake Effects on Buildings. The proposed method reduces the system of FDEs to a system of algebraic equations in the coefficients of the expansion using the Hermite polynomials. The introduced method is computer oriented and provides highly accurate solution. To demonstrate the efficiency of the method, two examples are solved and the results are displayed graphically. Finally, we convert the presented coupled systems from the case of its standard form to a first-order ordinary differential equations to compare the obtained numerical solutions with those solutions using the fourth-order Runge–Kutta method (RK4).


2017 ◽  
Vol 9 (3) ◽  
pp. 574-595 ◽  
Author(s):  
Xiaojun Zhou ◽  
Chuanju Xu

AbstractIn this paper, we consider the numerical method that is proposed and analyzed in [J. Cao and C. Xu, J. Comput. Phys., 238 (2013), pp. 154–168] for the fractional ordinary differential equations. It is based on the so-called block-by-block approach, which is a common method for the integral equations. We extend the technique to solve the nonlinear system of fractional ordinary differential equations (FODEs) and present a general technique to construct high order schemes for the numerical solution of the nonlinear coupled system of fractional ordinary differential equations (FODEs). By using the present method, we are able to construct a high order schema for nonlinear system of FODEs of the orderα,α>0. The stability and convergence of the schema is rigorously established. Under the smoothness assumptionf,g∈C4[0,T], we prove that the numerical solution converges to the exact solution with order 3+αfor 0<α≤1 and order 4 forα>1. Some numerical examples are provided to confirm the theoretical claims.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040045 ◽  
Author(s):  
ISRAR AHAMAD ◽  
KAMAL SHAH ◽  
THABET ABDELJAWAD ◽  
FAHD JARAD

In this paper, we investigate a nonlinear coupled system of fractional pantograph differential equations (FPDEs). The respective results address some adequate results for existence and uniqueness of solution to the problem under consideration. In light of fixed point theorems like Banach and Krasnoselskii’s, we establish the required results. Considering the tools of nonlinear analysis, we develop some results regarding Ulam–Hyers (UH) stability. We give three pertinent examples to demonstrate our main work.


Sign in / Sign up

Export Citation Format

Share Document