Biomechanical Study of Pediatric Human Cervical Spine: A Finite Element Approach

1999 ◽  
Vol 122 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Srirangam Kumaresan ◽  
Narayan Yoganandan ◽  
Frank A. Pintar ◽  
Dennis J. Maiman ◽  
Shashi Kuppa

Although considerable effort has been made to understand the biomechanical behavior of the adult cervical spine, relatively little information is available on the response of the pediatric cervical spine to external forces. Since significant anatomical differences exist between the adult and pediatric cervical spines, distinct biomechanical responses are expected. The present study quantified the biomechanical responses of human pediatric spines by incorporating their unique developmental anatomical features. One-, three-, and six-year-old cervical spines were simulated using the finite element modeling technique, and their responses computed and compared with the adult spine response. The effects of pure overall structural scaling of the adult spine, local component developmental anatomy variations that occur to the actual pediatric spines, and structural scaling combined with local component anatomy variations on the responses of the pediatric spines were studied. Age- and component-related developmental anatomical features included variations in the ossification centers, cartilages, growth plates, vertebral centrum, facet joints, and annular fibers and nucleus pulposus of the intervertebral discs. The flexibility responses of the models were determined under pure compression, pure flexion, pure extension, and varying degrees of combined compression–flexion and compression–extension. The pediatric spine responses obtained with the pure overall (only geometric) scaling of the adult spine indicated that the flexibilities consistently increase in a uniform manner from six- to one-year-old spines under all loading cases. In contrast, incorporation of local anatomic changes specific to the pediatric spines of the three age groups (maintaining the same adult size) not only resulted in considerable increases in flexibilities, but the responses also varied as a function of the age of the pediatric spine and type of external loading. When the geometric scaling effects were added to these spines, the increases in flexibilities were slightly higher; however, the pattern of the responses remained the same as found in the previous approach. These results indicate that inclusion of developmental anatomical changes characteristic of the pediatric spines has more of a predominant effect on biomechanical responses than extrapolating responses of the adult spine based on pure overall geometric scaling. [S0148-0731(00)00501-X]

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Narayan Yoganandan ◽  
Cameron R. Bass ◽  
Liming Voo ◽  
Frank A. Pintar

There is an increased need to develop female-specific injury criteria and anthropomorphic test devices (dummies) for military and automotive environments, especially as women take occupational roles traditionally reserved for men. Although some exhaustive reviews on the biomechanics and injuries of the human spine have appeared in clinical and bioengineering literatures, focus has been largely ignored on the difference between male and female cervical spine responses and characteristics. Current neck injury criteria for automotive dummies for assessing crashworthiness and occupant safety are obtained from animal and human cadaver experiments, computational modeling, and human volunteer studies. They are also used in the military. Since the average human female spines are smaller than average male spines, metrics specific to the female population may be derived using simple geometric scaling, based on the assumption that male and female spines are geometrically scalable. However, as described in this technical brief, studies have shown that the biomechanical responses between males and females do not obey strict geometric similitude. Anatomical differences in terms of the structural component geometry are also different between the two cervical spines. Postural, physiological, and motion responses under automotive scenarios are also different. This technical brief, focused on such nonuniform differences, underscores the need to conduct female spine-specific evaluations/experiments to derive injury criteria for this important group of the population.


2011 ◽  
Vol 467-469 ◽  
pp. 339-344
Author(s):  
Na Li ◽  
Jian Xin Liu

Head and neck injuries are the most frequent severe injury resulting from traffic accidents. Neck injury mechanisms are difficult to study experimentally due to the variety of impact conditions involved, as well as ethical issues, such as the use of human cadavers and animals. Finite element analysis is a comprehensive computer aided mathematical method through which human head and neck impact tolerance can be investigated. Detailed cervical spine models are necessary to better understand cervical spine response to loading, improve our understanding of injury mechanisms, and specifically for predicting occupant response and injury in auto crash scenarios. The focus of this study was to develop a C1–C2 finite element model with optimized mechanical parameter. The most advanced material data available were then incorporated using appropriate nonlinear constitutive models to provide accurate predictions of response at physiological levels of loading. This optimization method was the first utilized in biomechanics understanding, the C1–C2 model forms the basis for the development of a full cervical spine model. Future studies will focus on tissue-level injury prediction and dynamic response.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2017 ◽  
Vol 37 (3) ◽  
pp. 611-618 ◽  
Author(s):  
Bin Yang ◽  
Zheng Shi ◽  
Qun Wang ◽  
Feng Xiao ◽  
Tong-Tong Gu ◽  
...  

This study is based on a real finite element human head–neck model and concentrates on its numerical vibration characteristic. Frequency spectrum and mode shapes of the finite element model of human head–neck under mechanical vibration have been calculated. These vibration characteristics are in good agreement with the previous studies. The simulated fundamental frequency of 35.25 Hz is fairly similar to the published documents, and rarely reported modal responses such as “mastication” and flipping of nasal lateral cartilages modes, however, are introduced by our three-dimensional modal analysis. These additional modes may be of interest to surgeons or clinicians who are specialized in temporomandibular or rhinoplasty joint disorder. Modal validation in terms of modal shapes proposes a necessity for elaborate modeling to identify each individual part’s extra frequencies. Furthermore, it also studies the influence of damping on resonant frequencies and biomechanical responses. It is discovered that damping has an inverse proportionality between damping effect on natural frequency and that on biomechanical responses.


Sign in / Sign up

Export Citation Format

Share Document