Hybrid Brush Pocket Damper Seals for Turbomachinery

2000 ◽  
Vol 122 (2) ◽  
pp. 330-336 ◽  
Author(s):  
Hector E. Laos ◽  
John M. Vance ◽  
Steven E. Buchanan

Pocket damper seals perform a dual function: both sealing the pressurized gas around a rotating shaft and providing large amounts of vibration damping. The annular cavity between the labyrinth seal teeth is subdivided into separate annular cavities around the circumference of the rotor by partitioning walls. Also, the upstream and downstream teeth have different radial clearances to the rotor. These seals have been shown to provide a remarkable amount of direct damping to attenuate vibration in turbomachinery, but they generally leak more than conventional labyrinth seals if both seals have the same minimum clearance. Conversely, brush seals allow less than half the leakage of labyrinth seals, but published test results show no significant amount of damping. They are considered to be a primary choice for the seals in new aircraft engine designs because of their low leakage. This paper will describe a recently invented hybrid brush/pocket damper seal that combines high damping with low leakage. Previous brush seal results were studied and calculations were made to select a brush seal to combine with the pocket damper design. The result is a hybrid seal with high damping and low leakage. A special design feature can also allow active vibration control as a bonus benefit. A computer code written for the original pocket damper seal was modified to include the brush element at the exit blade. Results from the computer code indicate that the hybrid seal can have less leakage than a six bladed (or 6 knives) labyrinth seal along with orders of magnitude more damping. Experimental evaluations of the damping and leakage performance of the hybrid seal are being conducted by the authors. The experimental work reported here tested the damping capability of the new hybrid brush seal by exciting the seal journal through an impedance head. A conventional six-bladed labyrinth seal of the same working dimensions was also tested. The brush hybrid pocket damper seal is found to leak less than the labyrinth seal while producing two to three times more damping than the original pocket damper seal (orders of magnitude more than the conventional labyrinth). [S0742-4795(00)01102-9]

Author(s):  
Hector E. Laos ◽  
John M. Vance ◽  
Steven E. Buchanan

Pocket damper seals perform a dual function: both sealing the pressurized gas around a rotating shaft and providing large amounts of vibration damping. The annular cavity between the labyrinth seal teeth is subdivided into separate annular cavities around the circumference of the rotor by partitioning walls. Also, the upstream and downstream teeth have different radial clearances to the rotor. These seals have been shown to provide a remarkable amount of direct damping to attenuate vibration in turbomachinery, but they generally leak more than conventional labyrinth seals if both seals have the same minimum clearance. Conversely, brush seals allow less than half the leakage of labyrinth seals, but published test results show no significant amount of damping. They are considered to be a primary choice for the seals in new aircraft engine designs because of their low leakage. This paper will describe a recently invented hybrid brush/pocket damper seal that combines high damping with low leakage. Previous brush seal results were studied and calculations were made to select a brush seal to combine with the pocket damper design. The result is a hybrid seal with high damping and low leakage. A special design feature can also allow active vibration control as a bonus benefit. A computer code written for the original pocket damper seal was modified to include the brush element at the exit blade. Results from the computer code indicate that the hybrid seal can have less leakage than a six bladed (or 6 knives) labyrinth seal along with orders of magnitude more damping. Experimental evaluations of the damping and leakage performance of the hybrid seal are being conducted by the authors. The experimental work reported here tested the damping capability of the new hybrid brush seal by exciting the seal journal through an impedance head. A conventional six-bladed labyrinth seal of the same working dimensions was also tested. The brush hybrid pocket damper seal is found to leak less than the labyrinth seal while producing two to three times more damping than the original pocket damper seal, (orders of magnitude more than the conventional labyrinth).


Author(s):  
Binayak Roy ◽  
Hrishikesh V. Deo ◽  
Xiaoqing Zheng

Turbomachinery sealing is a challenging problem due to the varying clearances caused by thermal transients, vibrations, bearing lift-off etc. Leakage reduction has significant benefits in improving engine efficiency and reducing emissions. Conventional labyrinth seals have to be assembled with large clearances to avoid rubbing during large rotor transients. This results in large leakage and lower efficiency. In this paper, we propose a novel Progressive Clearance Labyrinth Seal that is capable of providing passive fluidic feedback forces that balance at a small tip-clearance. A modified packing ring is supported on flexures and employs progressively tighter teeth from the upstream to the downstream direction. When the tip-clearance reduces below the equilibrium clearance, fluidic feedback forces cause the packing ring to open. Conversely, when the tip-clearance increases above the equilibrium clearance, the fluidic feedback forces cause the packing ring to close. Due to this self-correcting behavior, the seal provides high differential pressure capability, low leakage and non-contact operation even in the presence of large rotor transients. Theoretical models for the feedback phenomenon have been developed and validated by experimental results.


Author(s):  
Oliver Munz ◽  
Lisa Hühn ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer ◽  
Tim Fischer ◽  
...  

Abstract Sealing systems contribute significantly to the efficiency of turbomachinery. Small gap widths, which are important for low leakage mass flows in labyrinth seals, combined with thermal and mechanical expansion of the rotor can lead to contact with the stator. During these so-called rubbing processes, it is necessary to make an accurate prediction with respect to the performance and service life of the seal. For this purpose, the influence of relative velocity in the contact (up to 165ms−1) and incursion rate (up to 0.5 mms−1) on the resulting thermal and mechanical loads as well as wear mechanisms are studied for the rubbing process between an inclined labyrinth seal fin and a honeycomb segment. Furthermore, different axial configurations of the seal fin with respect to the honeycomb structure are considered. The system reacts very sensitively to a change of the seal fin position relative to the honeycomb structure. The incursion per revolution reflects a change of the wear mechanism from abrasive to plastic for a certain value. The results of this study contribute to the optimization of labyrinth seals and the development of new types of liner materials as well as geometries.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Yuanqiao Zhang ◽  
Jun Li ◽  
Zhigang Li ◽  
Xin Yan

Abstract Cavity separation baffles can decrease the circumferential swirl intensity of labyrinth seals and increase the seals' rotordynamic characteristics. Compared with conventional baffles, the bristle packs of brush seal baffles can contact the rotor directly, thereby further reducing the swirl intensity of the seal cavity. This paper, using the numerical model combining a multifrequency elliptical whirling orbit model, a porous medium model, and transient Reynolds-averaged Navier–Stokes (RANS) solutions, compares the leakage flow and rotordynamic characteristics of a labyrinth seal with brush-seal baffles (LSBSB) and a labyrinth seal with conventional baffles (LSCB). Ideal air flows into the seal at an inlet preswirl velocity of 0 m/s (or 60 m/s or 100 m/s), total pressure of 690 kPa, and temperature of 14 °C. The outlet static pressure is 100 kPa and the rotational speed is 7500 r/min (surface speed of 66.8 m/s) or 15,000 r/min (surface speed of 133.5 m/s). Numerical results show that the LSBSB possesses the slightly less leakage flow rate than the LSCB due to the flow resistance of the bristle pack to the fluid. Compared with the LSCB, the LSBSB shows a higher positive effective stiffness (Keff) at all considered vibration frequencies and a higher effective damping (Ceff) for most vibration frequencies. What is more, the crossover frequency (fc0) of the LSBSB is significantly lower than that of the LSCB, which means that the LSBSB has a wider frequency range offering positive effective damping. The increasing inlet preswirl velocity and rotational speed only slightly affect the Keff for both seals. The Ceff of two seals decreases as the inlet preswirl velocity rises, especially for the LSCB. The Ceff of the LSCB slightly decreases because of the increasing rotational speed. In contrast, the Ceff of the LSBSB is not sensitive to the changes in rotational speed. In a word, the LSBSB possesses superior rotordynamic performance to the LSCB. Note that this work also investigates the leakage flow and rotordynamic characteristics a labyrinth seal with inclined baffles (LSIB) under the condition of u0 = 60 m/s and n = 15,000 r/min. The inclined baffles of the LSIB are same as the backing plates of LSBSB baffles. The LSIB has rotordynamic coefficients almost equal to the LSCB. Hence, the reason why the LSBSB possesses better rotordynamic performance than that of the LSCB is the flow resistance of bristle packs of brush seal baffles, not the inclination direction variation of baffles.


1980 ◽  
Vol 100 (4) ◽  
pp. 817-829 ◽  
Author(s):  
H. Stoff

The incompressible flow in a labyrinth seal is computed using the ‘κ−ε’ turbulence model with a pressure-velocity computer code in order to explain leakage phenomena against the mean pressure gradient. The flow is axisymmetric between a rotating shaft and an enclosing cylinder at rest. The main stream in circumferential direction induces a secondary mean flow vortex pattern inside annular cavities on the surface of the shaft. The domain of interest is one such cavity of an enlarged model of a labyrinth seal, where the finite difference result of a computer program is compared with measurements obtained by a back-scattering laser-Doppler anemometer at a cavity Reynolds number of ∼ 3 × 104and a Taylor number of ∼ 1·2 × 104. The turbulent kinetic energy and the turbulence dissipation rate are verified experimentally for a comparison with the result of the turbulence model.


1986 ◽  
Vol 108 (1) ◽  
pp. 19-25 ◽  
Author(s):  
D. L. Rhode ◽  
J. A. Demko ◽  
U. K. Traegner ◽  
G. L. Morrison ◽  
S. R. Sobolik

A new approach was developed and tested for alleviating the substantial convergence difficulty which results from implementation of the QUICK differencing scheme into a TEACH-type computer code. It is relatively simple, and the resulting CPU time and number of numerical iterations required to obtain a solution compare favorably with a previously recommended method. This approach has been employed in developing a computer code for calculating the pressure drop for a specified incompressible flow leakage rate in a labyrinth seal. The numerical model is widely applicable and does not require an estimate of the kinetic energy carry-over coefficient for example, whose value is often uncertain. Good agreement with measurements is demonstrated for both straight-through and stepped labyrinths. These new detailed results are examined, and several suggestions are offered for the advancement of simple analytical leakage as well as rotordynamic stability models.


Author(s):  
Hasham H. Chougule ◽  
Douglas Ramerth ◽  
Dhinagaran Ramachandran

Design improvements on labyrinth seal teeth and a honeycomb land are examined by three-dimensional CFD numerical modeling of the flow field. The only objective is reduction of the total leakage through the new seal. CFD assumptions and analysis was validated by comparison with leakage data from labyrinth seal experiments conducted by Stocker [1]. The baseline chosen for comparison of sealing effectiveness is a conventional low clearance straight-through labyrinth seal with four teeth and a honeycomb land of symmetrical hexagonal cells. The proposed new seal has a staggered honeycomb land and straight teeth with an inclined notch. CFD predicts ∼17% reduction in seal leakage at a radial clearance of 0.005 inch (0.122mm) due to higher wall friction and flow turbulence.


Author(s):  
Bilal Outirba ◽  
Patrick Hendrick

Recent developments in the aeronautic domain focus on the optimization of the lubrication oil system for civil aircraft gas turbine engines, in order to reduce air and oil consumptions. Specifically, over the last few decades, as brush seals have shown tremendous leakage performance in sealing secondary flows compared to classic labyrinth seal, an increasingly popular idea is to extend their utilization to bearing chambers applications. In the frame of the European FP7 E-Break project, the Aero-Thermo-Mechanics department of ULB collaborates with French aircraft engine manufacturer SNECMA in order to investigate experimentally the brush seal behaviour in an environment simulating the bearing chamber working conditions. The aim is first to deepen the brush seal behaviour knowledge by identifying the most influential geometric parameters acting on the leakage performance on both sides of the seal (oil and air), and on its wear, and by evaluating the friction torque and the dissipated heat. The paper will first highlight the effect of the brush seals geometric parameters on the air consumption and the torque friction. Results highlight a trade-off to be made between these two performance levels. Also, relations have been developed to predict the performance of a carbon brush seal with non-canted bristles. The bristle free length and the axial density must carefully be chosen first to dictate the brush seal porosity. The distance between the backing plate and the front plate acts as a secondary parameter to adjust the bristle pack stiffness, and it is proposed to mount such a carbon brush seal with a reduced interference to limit the effect of the brush seal wear on the air consumption. Finally, the carbon brush seals performance was compared with the latest ones, with promising results being shown to expect carbon brush seals to be employed at a higher scale in bearing chambers in the future.


1986 ◽  
Vol 108 (4) ◽  
pp. 674-680 ◽  
Author(s):  
D. L. Rhode ◽  
S. R. Sobolik

A new method for predicting the leakage through labyrinth seals has been developed and is shown to provide realistic results which agree with measurements. It utilizes a finite-difference computer code which was developed in order to compute the pressure drop across a single cavity of the seal. This quantity is obtained at several leakage flow Mach numbers to be used subsequently in predicting the leakage rate. The model is widely applicable and does not require an estimate of the kinetic energy carry-over coefficient, whose value is often uncertain for many untested configurations. Detailed cavity distributions of basic flowfield quantities are also presented and examined. Specifically, the predicted results of four seal leakage mass flow rates at given cavity inlet pressure and temperature are compared, and important variations are examined. Also, realistic approximations of flow variable distributions within a single cavity are made from the included figures to assist in the development of analytical methods.


1972 ◽  
Vol 94 (1) ◽  
pp. 5-11
Author(s):  
H. A. Koenig ◽  
W. W. Bowley

A computer code is developed herein which is shown to be a useful tool in the design of labyrinth seals for gas turbine and other engineering applications. The algorithm is based upon theoretical considerations and is general enough to provide seal design parameters for a variety of input and flow conditions. Two examples are solved. The first, a theoretical consideration, demonstrates the ability of the program to effectively treat various geometrical and dynamic conditions. The second, an actual test, demonstrates the accuracy with which the analysis will predict the actual seal leakage behavior.


Sign in / Sign up

Export Citation Format

Share Document