scholarly journals Current Status and Prospects of Gas Turbine Technology Application

2021 ◽  
Vol 2108 (1) ◽  
pp. 012009
Author(s):  
Jiangpeng Li ◽  
Ziti Liu ◽  
Ruoxuan Ye

Abstract The gas turbine is widely used in various fields, including powering aircraft, ships, trains, and electrical generators. This paper reviews multiple researches about two usages of gas turbines, including power generation and propulsion in aerospace. To be specific, two types of gas turbines have been considered in the power generation section. The first one is the micro-scale turbine, and its working principle has been introduced in section 2.1.1. In addition, six diverse kinds of gas turbines, sorted by a different manufacturer, are introduced in 2.1.2, and it has been found out that, compared to its counterpart, EnerTwin is obviously more sustainable. At the same time, both of them generally cost the same. The second type of gas turbine is used in a combined cycle power plant (CCPP), a popular power station. The working principle of CCPP is introduced in 2.2.1, while several optimization methods are illustrated in 2.2.2, including solar thermal power methods and other novel methods. The result indicates that the most popular method of optimizing the combined cycle gas turbine is integrating an additional unit. One of those outstanding technics is the integrated solar-combined cycle, contributing to 64% of fuel saving with 2.8% of output reduction.

Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.


Author(s):  
Zengo Aizawa ◽  
William Carberg

Combined cycle technology was successfully applied to the 2000 MW Tokyo Electric Power Co. (TEPCO) Futtsu Station. The fourteen 165 MW single shaft combined cycle Stages were commissioned between 1985 and 1988. Since that time, experience has been accumulated on these 2000 deg F (1100 deg C) class gas turbine based Stages. With the advent of 2300 deg F (1300 deg C) class gas turbines and dry low NOx technologies, an advanced combined cycle with substantially improved performance became possible. TEPCO commissioned General Electric, Toshiba and Hitachi to perform a study to optimize the use of these technologies. The study was completed and the participants are now doing detailed design of a plant consisting of eight 350 MW single shaft combined cycle Stages. The plant will be designated the Yokohama Thermal Power Station No. 7 and No. 8 Groups. This paper discusses experience gained at the Futtsu Station, the results of the optimization study for an advanced combined cycle and the progress of the design for Yokohama Groups No. 7 and No. 8.


Author(s):  
Tadashi Tsuji

Air cooling blades are usually applied to gas turbines as a basic specification. This blade cooling air is almost 20% of compressor suction air and it means that a great deal of compression load is not converted effectively to turbine power generation. This paper proposes the CCM (Cascade Cooling Module) system of turbine blade air line and the consequent improvement of power generation, which is achieved by the reduction of cooling air consumption with effective use of recovered heat. With this technology, current gas turbines (TIT: turbine inlet temperature: 1350°C) can be up-rated to have a relative high efficiency increase. The increase ratio has a potential to be equivalent to that of 1500°C Class GT/CC against 1350°C Class. The CCM system is designed to enable the reduction of blade cooling air consumption by the low air temperature of 15°C instead of the usual 200–400°C. It causes the turbine operating air to increase at the constant suction air condition, which results in the enhancement of power and thermal efficiency. The CCM is installed in the cooling air line and is composed of three stage coolers: steam generator/fuel preheater stage, heat exchanger stage for hot water supplying and cooler stage with chilled water. The coolant (chilled water) for downstream cooler is produced by an absorption refrigerator operated by the hot water of the upstream heat exchanger. The proposed CCM system requires the modification of cooling air flow network in the gas turbine but produces the direct effect on performance enhancement. When the CCM system is applied to a 700MW Class CC (Combined Cycle) plant (GT TIT: 135°C Class), it is expected that there will be a 40–80MW increase in power and +2–5% relative increase in thermal efficiency.


Author(s):  
A. J. Giramonti ◽  
F. L. Robson

Numerous attempts have been made during the past two decades to develop advanced power generation systems which could burn coal or coal-derived fuels both economically and in an environmentally acceptable manner. Although much valuable technology has been derived from these programs, commercially viable power generation alternatives have not yet appeared. One prospective way to expedite the commercialization of advanced coal-fired power systems is to meld the latest gas turbine technology with the emerging technology for producing slurries of water and ultra clean coal. This paper describes a DOE-sponsored program to identify the most attractive gas turbine power system that can operate on slurry fuels. The approach is to use slurries produced from finely ground (<10 microns) coal powder from which most of the ash and sulfur has been removed. The gas turbines will incorporate a rich-burn, quick-quench combustor to minimize conversion of fuel-bound nitrogen to NOx, advanced single crystal alloys with improved hot corrosion resistance and strength, advanced metallic and ceramic coatings with improved erosion and corrosion resistance, and more effective hot section cooling. Two different power plant configurations are covered: a large (nominally 400 MW) combined cycle plant designed for base load applications; and a small (nominally 12 MW) simple-cycle plant designed for peaking, industrial, and cogeneration applications.


Author(s):  
Kiyoshi Fujimoto ◽  
Yuya Fukunaga ◽  
Satoshi Hada ◽  
Toshishige Ai ◽  
Masanori Yuri ◽  
...  

The development of gas turbines, Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has continued to pursue and contribute to society in terms of global environmental conservation and stable energy supply. MHPS leverages its abundant gas turbine operation experience and takes advantage of its extensive advanced technologies research on the Japanese National Project. MHPS has been participating in this project since 2004. Recent years’ achievements include the demonstration of a gas turbine combined cycle (GTCC) efficiency in excess of 62% created by increasing the turbine inlet temperature to the 1,600°C class in the M501J in 2011. The Latest M701F incorporates “J” gas turbine technologies, already applied to actual equipment, for efficiency improvement. It also applies air-cooled combustor technologies successfully validated in the G class, for increased flexibility. The 1st unit started commercial operation in 2015 and currently 4 units has accumulated more than 46,000 actual operating hours collectively. MHPS is making the upgrading program for existing F-series gas turbines. The proven technology verified in the M501J and developed in the National project increases efficiency and reliability. This paper explains the features and development status of Latest M701F gas turbine, and explains upgrade program for existing F-series gas turbines.


2005 ◽  
Vol 127 (3) ◽  
pp. 592-598 ◽  
Author(s):  
M. Bianchi ◽  
G. Negri di Montenegro ◽  
A. Peretto

The use of gas turbine and combined cycle power plants for thermal and electric power generation is, nowadays, a consolidated technology. Moreover, the employment of combined heat and power production, especially for low power requirements, is constantly increasing. In this scenario, below ambient pressure discharge gas turbine (BAGT) is an innovative and interesting application; the hot gases discharged from a gas turbine may be expanded below ambient pressure to obtain an increase in electric power generation. The gases are then cooled to supply heat to the thermal utility and finally recompressed to the ambient pressure. The power plant cogenerative performance depends on the heat and electric demand that usually varies during the year (for residential heating the heat to electric power ratio may range from 0.3 to 9). In this paper, the thermal load variation influence on the BAGT performance will be investigated and compared with those of gas turbine and combined cycle power plants.


2014 ◽  
Vol 136 (07) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article focuses on the use of gas turbines for electrical power, mechanical drive, and marine applications. Marine gas turbines are used to generate electrical power for propulsion and shipboard use. Combined-cycle electric power plants, made possible by the gas turbine, continue to grow in size and unmatched thermal efficiency. These plants combine the use of the gas turbine Brayton cycle with that of the steam turbine Rankine cycle. As future combined cycle plants are introduced, we can expect higher efficiencies to be reached. Since almost all recent and new U.S. electrical power plants are powered by natural gas-burning, high-efficiency gas turbines, one has solid evidence of their contribution to the greenhouse gas reduction. If coal-fired thermal power plants, with a fuel-to-electricity efficiency of around 33%, are swapped out for combined-cycle power plants with efficiencies on the order of 60%, it will lead to a 70% reduction in carbon emissions per unit of electricity produced.


Author(s):  
Tadashi Tsuji

The reciprocating engine operates with a maximum pressure and temperature in its cylinders that is higher than that in conventional gas turbines. When a gas engine is integrated with a gas turbine instead of a turbocharger, it is an ETCS (Engine-Turbo Compound System). We have developed the concept of a compound system with ERGT (Engine Reheat Gas Turbine) and propose it as a system with potentially high thermal efficiency. A natural gas firing gas turbine combined cycle (CC) is selected as the standard system for a thermal power plant. A higher TIT (Turbine Inlet Temperature) of gas turbine usually enables higher power generation efficiency. Focusing on the effect of engine exhaust temperature, we found that the ETCS cycle with a ERGT has the potential to achieve higher thermal efficiency than that of a gas turbine combined cycle, with no change in TIT. An engine exhaust temperature of 1173K increases the system power generation efficiency from 46 to 50%LHV (TIT 1150°C) and 54 to 57%LHV (TIT 1350°C), respectively. The gas engine–gas turbine combined cycle has the potential to achieve a significant efficiency increase of +4.1%LHV (TIT 1150°C) and +2.8%LHV (TIT 1350°C), making it a promising system for future power plants. Efficiency is expected to be improved by +8.7% (TIT 1150°C) and +5.6% (TIT 1350°C), relatively.


Author(s):  
Michael Welch ◽  
Nicola Rossetti

Historically gas turbine power plants have become more efficient and reduced the installed cost/MW by developing larger gas turbines and installing them in combined cycle configuration with a steam turbine. These large gas turbines have been designed to maintain high exhaust gas temperatures to maximise the power generation from the steam turbine and achieve the highest overall electrical efficiencies possible. However, in today’s electricity market, with more emphasis on decentralised power generation, especially in emerging nations, and increasing penetration of intermittent renewable power generation, this solution may not be flexible enough to meet operator demands. An alternative solution to using one or two large gas turbines in a large central combined cycle power plant is to design and install multiple smaller decentralised power plant, based on multiple gas turbines with individual outputs below 100MW, to provide the operational flexibility required and enable this smaller power plant to maintain a high efficiency and low emissions profile over a wide load range. This option helps maintain security of power supplies, as well as providing enhanced operational flexibility through the ability to turn turbines on and off as necessary to match the load demand. The smaller gas turbines though tend not to have been optimised for combined cycle operation, and their exhaust gas temperatures may not be sufficiently high, especially under part load conditions, to generate steam at the conditions needed to achieve a high overall electrical efficiency. ORC technology, thanks to the use of specific organic working fluids, permits efficient exploitation of low temperatures exhaust gas streams, as could be the case for smaller gas turbines, especially when working on poor quality fuels. This paper looks at how a decentralised power plant could be designed using Organic Rankine Cycle (ORC) in place of the conventional steam Rankine Cycle to maximise power generation efficiency and flexibility, while still offering a highly competitive installed cost. Combined cycle power generation utilising ORC technology offers a solution that also has environmental benefits in a water-constrained World. The paper also investigates the differences in plant performance for ORC designs utilising direct heating of the ORC working fluid compared to those using an intermediate thermal oil heating loop, and looks at the challenges involved in connecting multiple gas turbines to a single ORC turbo-generator to keep installed costs to a minimum.


Sign in / Sign up

Export Citation Format

Share Document