Development of Low NOx Combustion Technology in Medium-Btu Fueled 1300 °C-Class Gas Turbine Combustor in IGCC

Author(s):  
Takeharu Hasegawa ◽  
Tohru Hisamatsu ◽  
Yasunari Katsuki ◽  
Mikio Sato ◽  
Hiromi Koizumi ◽  
...  

The development of integrated coal gasification combined cycle (IGCC) systems ensures higher thermal efficiency and environmentally sound options for supplying future coal utilizing power generation needs. The Japanese government and electric power industries in Japan promoted research and development of an IGCC system using an air-blown entrained-flow coal gasifier. On the other hand, Europe and the United States are now developing the oxygen-blown IGCC demonstration plants. Gasified coal fuel produced in an oxygen-blown entrained-flow coal gasifier, has a calorific value of 8–13MJ/m3 which is only 1/5–1/3 that of natural gas. However, the flame temperature of medium-Btu gasified coal fuel is higher than that of natural gas and so NOx production from nitrogen fixation is expected to increase significantly. In the oxygen-blown IGCC, a surplus nitrogen produced in the air-separation unit (ASU) is premixed with gasified coal fuel (medium-Btu fuel) and injected into the combustor, to reduce thermal-NOx production and to recover the power used for the ASU. In this case, the power to compress nitrogen increases. Low NOx emission technology which is capable of decreasing the power to compress nitrogen is a significant advance in gas turbine development with an oxygen-blown IGCC system. Analyses confirmed that the thermal efficiency of the plant improved by approximately 0.3 percent (absolute) by means of nitrogen direct injection into the combustor, compared with a case where nitrogen is premixed with gasified coal fuel before injection into the combustor. In this study, based on the fundamental test results using a small diffusion burner and a model combustor, we designed the combustor in which the nitrogen injection nozzles arranged on the burner were combined with the lean combustion technique for low-NOx emission. In this way, we could reduce the high temperature region, where originated the thermal-NOx production, near the burner positively. And then, a combustor with a swirling nitrogen injection function used for a gas turbine, was designed and constructed, and its performance was evaluated under pressurized conditions of actual operations using a simulated gasified coal fuel. From the combustion test results, the thermal-NOx emission decreased under 11ppm (corrected at 16% O2), combustion efficiency was higher than 99.9% at any gas turbine load. Moreover, there was different effects of pressure on thermal-NOx emission in medium-Btu fuel fired combustor from the case of natural gas fired combustor.

2002 ◽  
Vol 125 (1) ◽  
pp. 1-10 ◽  
Author(s):  
T. Hasegawa ◽  
T. Hisamatsu ◽  
Y. Katsuki ◽  
M. Sato ◽  
H. Koizumi ◽  
...  

The development of integrated coal gasification combined cycle (IGCC) systems ensures higher thermal efficiency and environmentally sound options for supplying future coal utilizing power generation needs. The Japanese government and electric power industries in Japan promoted research and development of an IGCC system using an air-blown entrained-flow coal gasifier. On the other hand, Europe and the United States are now developing the oxygen-blown IGCC demonstration plants. Gasified coal fuel produced in an oxygen-blown entrained-flow coal gasifier, has a calorific value of 8–13 MJ/m3 which is only 1/5–1/3 that of natural gas. However, the flame temperature of medium-Btu gasified coal fuel is higher than that of natural gas and so NOx production from nitrogen fixation is expected to increase significantly. In the oxygen-blown IGCC, a surplus nitrogen produced in the air-separation unit (ASU) is premixed with gasified coal fuel (medium-Btu fuel) and injected into the combustor, to reduce thermal-NOx production and to recover the power used for the ASU. In this case, the power to compress nitrogen increases. Low NOx emission technology which is capable of decreasing the power to compress nitrogen is a significant advance in gas turbine development with an oxygen-blown IGCC system. Analyses confirmed that the thermal efficiency of the plant improved by approximately 0.3% (absolute) by means of nitrogen direct injection into the combustor, compared with a case where nitrogen is premixed with gasified coal fuel before injection into the combustor. In this study, based on the fundamental test results using a small diffusion burner and a model combustor, we designed the combustor in which the nitrogen injection nozzles arranged on the burner were combined with the lean combustion technique for low-NOx emission. In this way, we could reduce the high-temperature region, where originated the thermal-NOx production, near the burner positively. And then, a combustor with a swirling nitrogen injection function used for a gas turbine, was designed and constructed, and its performance was evaluated under pressurized conditions of actual operations using a simulated gasified coal fuel. From the combustion test results, the thermal-NOx emission decreased under 11 ppm (corrected at 16% O2 ), combustion efficiency was higher than 99.9% at any gas turbine load. Moreover, there was different effects of pressure on thermal-NOx emission in medium-Btu fuel fired combustor from the case of a natural gas fired combustor.


Author(s):  
Takeharu Hasegawa ◽  
Tohru Hisamatsu ◽  
Yasunari Katsuki ◽  
Mikio Sato ◽  
Masahiko Yamada ◽  
...  

The development of integrated coal gasification combined cycle (IGCC) systems ensures cost-effective and environmentally sound options for supplying future coal utilizing power generation needs. The Japanese government and the electric power industries in Japan promoted research and development of an IGCC system using an air-blown entrained-flow coal gasifier. We worked on developing a low-Btu fueled gas turbine combustor to improve the thermal efficiency of the IGCC by raising the inlet-gas temperature of gas turbine. On the other hand, Europe and the United States are now developing the oxygen-blown IGCC demonstration plants. Coal gasified fuel produced in an oxygen-blown entrained-flow coal gasifier, has a calorific value of 8.6MJ/m 3 which is one fifth that of natural gas. However, the adiabatic flame temperature of oxygen-blown medium-Btu coal gaseous fuel is higher than that of natural gas and so NOx production from nitrogen fixation is expected to increase significantly. In the oxygen-blown IGCC system, a surplus nitrogen in quantity is produced in the oxygen-production unit. When nitrogen premixed with coal gasified fuel is injected into the combustor, the power to compress nitrogen increases. A low NOx combustion technology which is capable of decreasing the power to compress nitrogen is a significant advance in gas turbine development with an oxygen-blown IGCC system. We have started to develop a low NOx combustion technology using medium-Btu coal gasified fuel produced in the oxygen-blown IGCC process. In this paper, the effect of nitrogen injected directly into the combustor on the thermal efficiency of the plant is discussed. A 1300 °C-class gas turbine combustor with a swirling nitrogen injection function designed with a stable and low NOx combustion technology was constructed and the performance of this combustor was evaluated under atmospheric pressure conditions. Analyses confirmed that the thermal efficiency of the plant improved by 0.2 percent (absolute), compared with a case where nitrogen is premixed with coal gasified fuel before injection into the combustor. Moreover, this new technique which injects nitrogen directly into the high temperature region in the combustor results in a significant reduction in NOx production from nitrogen fixation. We estimate that CO emission concentration decreases to a significant level under high pressure conditions, while CO emission concentration in contrast to NOx emission rises sharply with increases in quantity of nitrogen injected into the combustor.


Fuel ◽  
2019 ◽  
Vol 237 ◽  
pp. 50-59 ◽  
Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Hua Zhou ◽  
Zhuyin Ren

2013 ◽  
Vol 318 ◽  
pp. 371-374
Author(s):  
Chen Fan

There was a conflict between NOx emission and engine power of modified natural gas engine. Influence facters of NOx emission and emission characteristics of existing modified engine were studied. Emission and engine power of natural gas engine modified from gasoline and diesel engine were compared. Then some sugesstion are brought out for designing low NOx emission natural gas engine and promote engine power.


Author(s):  
Waseem Nazeer ◽  
Kenneth Smith ◽  
Patrick Sheppard ◽  
Robert Cheng ◽  
David Littlejohn

The continued development of a low swirl injector for ultra-low NOx gas turbine applications is described. An injector prototype for natural gas operation has been designed, fabricated and tested. The target application is an annular gas turbine combustion system requiring twelve injectors. High pressure rig test results for a single injector prototype are presented. On natural gas, ultra-low NOx emissions were achieved along with low CO. A turndown of approximately 100°F in flame temperature was possible before CO emissions increased significantly. Subsequently, a set of injectors was evaluated at atmospheric pressure using a production annular combustor. Rig testing again demonstrated the ultra-low NOx capability of the injectors on natural gas. An engine test of the injectors will be required to establish the transient performance of the combustion system and to assess any combustor pressure oscillation issues.


Author(s):  
K. K. Botros ◽  
M. J. de Boer ◽  
G. Kibrya

A one dimensional model based on fundamental principles of gas turbine thermodynamics and combustion processes was constructed to quantify the principle of exhaust gas recirculation (EGR) for NOx reduction. The model utilizes the commercial process simulation software ASPEN PLUS®. Employing a set of 8 reactions including the Zeldovich mechanism, the model predicted thermal NOx formation as function of amount of recirculation and the degree of recirculate cooling. Results show that addition of sufficient quantities of uncooled recirculate to the inlet air (i.e. EGR>∼4%) could significantly decrease NOx emissions but at a cost of lower thermal efficiency and specific work. Cooling the recirculate also reduced NOx at lower quantities of recirculation. This has also the benefit of decreasing losses in the thermal efficiency and in the specific work output. Comparison of a ‘rubber’ and ‘non-rubber’ gas turbine confirmed that residence time is one important factor in NOx formation.


Author(s):  
Sadahiro Ohno ◽  
Hiroyuki Yamazaki ◽  
Naoki Hagi ◽  
Hidehiko Nishimura

Worldwide environmental concerns are placing center focus on effective utilization of energy and carbon dioxide emission reductions. The power generation industry has engaged in the replacement of existing aged thermal power plants with state-of-the-art natural gas fired power plants capable of achieving considerable reductions in energy consumption and emissions of green house gases. The replacement of three exiting 175MW heavy oil and coal-firing power plants with a highly effective 446MW gas-firing combined cycle power plant owned and operated by Tohoku Electric Power Company is one example of this effort. The construction of the new Sendai thermal power station, Unit No.4 started in November, 2007 achieving commercial operation in July, 2010. Mitsubishi Heavy Industries most recent 50Hz F class gas turbine upgrade, the M701F4 was adopted for this project. This engine is based on the successful M701F3 gas turbine with a 6% air flow increase and a slight bump of the turbine inlet temperature in order to achieve better thermal efficiency and more power output. The application of these advanced technologies resulted in a plant thermal efficiency of approximately 58% LHV of the new unit from the original 43% of the previous coal-firing units. The application of these advanced technologies and the use of natural gas resulted in a 2/3 carbon-dioxide emissions reduction.


1992 ◽  
Vol 24 (1) ◽  
pp. 1391-1397 ◽  
Author(s):  
M.A. Toqan ◽  
J.M. Beér ◽  
P. Jansohn ◽  
N. Sun ◽  
A. Testa ◽  
...  

Author(s):  
Arun Basu ◽  
Mike Gradassi ◽  
Ron Sills ◽  
Theo Fleisch ◽  
Raj Puri

A new, ultra-clean fuel for gas turbines — a blend consisting primarily of dimethyl ether (DME) with lesser amounts of methanol and water — has been identified by BP. This fuel, containing no metals, sulfur or aromatics, burns like natural gas and it can be handled like LPG. The turbine-grade DME fuel can be manufactured from natural gas, coal and other hydrocarbon or biomass feedstocks. High-purity DME, manufactured from methanol, is currently used as an aerosol propellant due to its environmentally benign characteristics. Fuel-grade DME is used commercially as a LPG-substitute in China. BP initiated key programs to test various fuel mixtures containing DME in General Electric test combustors with equivalent electricity production of nearly 16 MW. Later, BP collaborated with EPDC (Electric Power Development Corporation, Japan) to conduct additional follow-up tests. These tests show that DME is an excellent gas turbine fuel with emissions properties comparable to natural gas. BP is currently working with the Indian Oil Corporation (IOCL), the Gas Authority of India Limited (GAIL) and the Indian Institute of Petroleum to evaluate the potential of DME as a multi-purpose fuel for India. In June 2000, the India Ministry of Power issued a notification permitting the use of DME as a fuel for power generation subject to its meeting all the environmental and pollution regulations. This paper presents key gas turbine combustor test results and discusses how DME can be used as a fuel in gas turbines.


1986 ◽  
Vol 108 (2) ◽  
pp. 240-243
Author(s):  
J. O. Wiggins

Modifying a simple-cycle gas turbine to include heat exchangers can improve its thermal efficiency significantly (as much as 20 percent). Advanced regenerative and intercooled regenerative gas turbines for marine application have recently been the subject of numerous studies, most of which have shown that lower fuel consumption can be achieved by adding heat exchangers to existing simple-cycle gas turbines. Additional improvements in thermal efficiency are available by increasing the efficiency of the turbomachinery itself, particularly that of the gas turbine’s air compressor. Studies by Caterpillar Tractor Company and Solar Turbines Incorporated on a recuperated, variable-geometry gas turbine indicate an additional 8 to 10 percent improvement in thermal efficiency is possible when an improved higher efficiency compressor is included in the gas turbine modification. During these studies a novel compressor, the Axi-Fuge, was devised. This paper discusses the Axi-Fuge concept, its origin, design criteria and approach, and some test results.


Sign in / Sign up

Export Citation Format

Share Document