Microturbine / Fuel-Cell Coupling for High-Efficiency Electrical-Power Generation

Author(s):  
Aristide F. Massardo ◽  
Colin F. McDonald ◽  
Theodosios Korakianitis

Microturbines and fuel cells are currently attracting a lot of attention to meet future users needs in the distributed generation market. This paper addresses a preliminary analysis of a representative state-of-the-art 50 kW microturbine coupled with a high-temperature solid-oxide fuel cell (SOFC). The technologies of the two elements of such a hybrid-power plant are in a different state of readiness. The microturbine is in an early stage of pre-production and the SOFC is still in the development phase. It is premature to propose an optimum solution. Based on today’s technology the hybrid plant, using natural gas fuel, would have a power output of about 389 kW, and an efficiency of 60 percent. If the waste heat is used the overall fuel utilization efficiency would about 80 percent. Major features, parameters and performance of the microturbine and the SOFC are discussed. The compatibility of the two systems is addressed, and the areas of technical concern, and mismatching issues are identified and discussed. Fully understanding these, and identifying solutions, is the key to the future establishing of an optimum overall system. This approach is viewed as being in concert with evolving technological changes. In the case of the microturbine changes will be fairly minor as they enter production on a large scale within the next year or so, but are likely to be significant for the SOFC in the next few years, as extensive efforts are expended to reduce unit cost. It is reasonable to project that a high performance and cost-effective hybrid plant, with high reliability, will be ready for commercial service in the middle of the first decade of the 21st century. While several microturbines can be packaged to give an increased level of power, this can perhaps be more effectively accomplished by coupling just a single gas turbine module with a SOFC. The resultant larger power output unit opens up new market possibilities in both the industrial nations and developing countries.

2000 ◽  
Vol 124 (1) ◽  
pp. 110-116 ◽  
Author(s):  
A. F. Massardo ◽  
C. F. McDonald ◽  
T. Korakianitis

Microturbines and fuel cells are currently attracting a lot of attention to meet future users needs in the distributed generation market. This paper addresses a preliminary analysis of a representative state-of-the-art 50-kW microturbine coupled with a high-temperature solid-oxide fuel cell (SOFC). The technologies of the two elements of such a hybrid-power plant are in a different state of readiness. The microturbine is in an early stage of pre-production and the SOFC is still in the development phase. It is premature to propose an optimum solution. Based on today’s technology the hybrid plant, using natural gas fuel, would have a power output of about 389 kW, and an efficiency of 60 percent. If the waste heat is used the overall fuel utilization efficiency would be about 80 percent. Major features, parameters, and performance of the microturbine and the SOFC are discussed. The compatibility of the two systems is addressed, and the areas of technical concern, and mismatching issues are identified and discussed. Fully understanding these, and identifying solutions, is the key to the future establishing of an optimum overall system. This approach is viewed as being in concert with evolving technological changes. In the case of the microturbine changes will be fairly minor as they enter production on a large scale within the next year or so, but are likely to be significant for the SOFC in the next few years, as extensive efforts are expended to reduce unit cost. It is reasonable to project that a high performance and cost-effective hybrid plant, with high reliability, will be ready for commercial service in the middle of the first decade of the 21st century. While several microturbines can be packaged to give an increased level of power, this can perhaps be more effectively accomplished by coupling just a single gas turbine module with a SOFC. The resultant larger power output unit opens up new market possibilities in both the industrial nations and developing countries.


2019 ◽  
Vol 198 ◽  
pp. 111842
Author(s):  
Xin Zhang ◽  
Jianying Du ◽  
Yee Sin Ang ◽  
Jincan Chen ◽  
Lay Kee Ang

2022 ◽  
pp. 1-33
Author(s):  
Xiuqin Zhang ◽  
Wentao Cheng ◽  
Qiubao Lin ◽  
Longquan Wu ◽  
Junyi Wang ◽  
...  

Abstract Proton exchange membrane fuel cells (PEMFCs) based on syngas are a promising technology for electric vehicle applications. To increase the fuel conversion efficiency, the low-temperature waste heat from the PEMFC is absorbed by a refrigerator. The absorption refrigerator provides cool air for the interior space of the vehicle. Between finishing the steam reforming reaction and flowing into the fuel cell, the gases release heat continuously. A Brayton engine is introduced to absorb heat and provide a useful power output. A novel thermodynamic model of the integrated system of the PEMFC, refrigerator, and Brayton engine is established. Expressions for the power output and efficiency of the integrated system are derived. The effects of some key parameters are discussed in detail to attain optimum performance of the integrated system. The simulation results show that when the syngas consumption rate is 4.0 × 10−5 mol s−1cm−2, the integrated system operates in an optimum state, and the product of the efficiency and power density reaches a maximum. In this case, the efficiency and power density of the integrated system are 0.28 and 0.96 J s−1 cm−2, respectively, which are 46% higher than those of a PEMFC.


2004 ◽  
Vol 1 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Mark C. Williams ◽  
Bruce R. Utz ◽  
Kevin M. Moore

The U.S. Department of Energy’s (DOE) Office of Fossil Energy’s (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell turbine hybrid power generation systems for near term distributed generation (DG) markets with an emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions in research under the Solid-State Energy Conversion Alliance (SECA) initiative for the development and commercialization of modular, low cost, and fuel flexible SOFC systems. The SECA initiative, through advanced materials, processing and system integration research and development, will bring the fuel cell cost to $400 per kilowatt (kW) for stationary and auxiliary power unit (APU) markets. The President of the U.S. has launched us into a new hydrogen economy. The logic of a hydrogen economy is compelling. The movement to a hydrogen economy will accomplish several strategic goals. The U.S. can use its own domestic resources—solar, wind, hydro, and coal. The U.S. uses 20 percent of the world’s oil but has only 3 percent of resources. Also, the U.S. can reduce green house gas emissions. Clear Skies and Climate Change initiatives aim to reduce carbon dioxide (CO2), nitrogen oxides (NOx), and sulfur dioxide (SO2) emissions. SOFCs have no emissions, so they figure significantly in these DOE strategies. In addition, DG—SOFCs, reforming, energy storage—has significant benefit for enhanced security and reliability. The use of fuel cells in cars is expected to bring about the hydrogen economy. However, commercialization of fuel cells is expected to proceed first through portable and stationary applications. This logic says to develop SOFCs for a wide range of stationary and APU applications, initially for conventional fuels, then switch to hydrogen. Like all fuel cells, the SOFC will operate even better on hydrogen than conventional fuels. The SOFC hybrid is a key part of the FutureGen plants. FutureGen is a major new Presidential initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power and other parts of the plant could produce hydrogen and sequester CO2. The hydrogen produced can be used in fuel cell cars and for SOFC DG applications.


Author(s):  
Andy Schroder ◽  
Mark G. Turner ◽  
Rory A. Roberts

Two combined cycle engine cascade concepts are presented in this paper. The first uses a traditional open loop gas turbine engine (Brayton cycle) with a combustor as the topping cycle and a series of supercritical carbon dioxide (S–CO2) engines as intermediate cycles and a bottoming cycle. A global optimization of the engine design parameters was conducted to maximize the combined efficiency of all of the engines. A combined cycle efficiency of 65.0% is predicted. The second combined cycle configuration utilizes a fuel cell inside of the topping cycle in addition to a combustor. The fuel cell utilizes methane fuel. The waste heat from the fuel cell is used to heat the high pressure air. A combustor is also used to burn the excess fuel not usable by the fuel cell. After being heated, the high pressure, high temperature air expands through a turbine to atmospheric pressure. The low pressure, intermediate temperature exhaust air is then used to power a cascade of supercritical carbon dioxide engines. A combined efficiency of 73.1% using the fuel lower heating value is predicted with this combined fuel cell and heat engine device. Details of thermodynamics as well as the (S–CO2) engines are given.


2006 ◽  
Vol 46 ◽  
pp. 104-110 ◽  
Author(s):  
Gang Chen

Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices that convert waste heat into electricity. Superlattices grown by thin-film deposition techniques, however, are not suitable for large scale applications. Nanocomposites represent one approach that can lead to high thermoelectric figure merit. This paper reviews the current understanding of thermal conductivity reduction mechanisms in superlattices and presents theoretical studies on thermoelectric properties in semiconducting nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials.


Author(s):  
Vittorio Verda ◽  
Flavio Nicolin

In this paper, a hybrid plant obtained by integrating a molten carbonate fuel cell stack with a micro gas turbine and a steam reformer is considered. The system also produces hydrogen through a pressure swing absorption system. The aim of this work is the multi-objective optimisation of the system, considering energy and economic objective functions. Possible off-design operating conditions accounting for degradation of the fuel cell performance and time variation in the biogas composition are considered, as well as variation in the ambient temperature. The results show that the operating temperature of the fuel cell is a crucial design parameter as its value strongly affects the plant efficiency, its lifetime and the unit cost of electricity.


2020 ◽  
Author(s):  
ming xu ◽  
Hanlin Wang ◽  
Mingxian Liu ◽  
Jianning Zhao ◽  
Yuqiong Zhang ◽  
...  

Abstract With increasing demand of green energy supply with high efficiency and low CO2 emission, Solid oxide fuel cell (SOFC) has been intensively developed in recent years. And the integration of gasification with fuel cell (IGFC) shows potential in large scale power generation to further increase the system efficiency. Reliable design of multi-stacks for large system and long term stability of stacks with practical fuel gas from industrial equipment are the key for commercial application of IGFC. In this work, a test rig of 5kW SOFC system was fabricated using practical syngas from industrial gasifiers as fuel and long term test under high fuel utility was conducted to investigate the system performance. The results show that the maximum steady output power of system is 5700W for hydrogen case and 5660W for syngas case, and the maximum steady electrical efficiency is 61.24% while the fuel utility efficiency is 89.25%. The test lasted for more than 500h as the fuel utility efficiency was larger than 83%. The performances of each stack tower are almost identical at both initial stage and after long term operation. After 500h operation, the performances of stack towers just slight decrease under lower current and almost not change under higher current. Therefore, the results illustrate that the reliability of multi-stacks design and the prospect of SOFC power generation system for further enlarging its application in a MWth demonstration.


2021 ◽  
Vol 242 ◽  
pp. 02007
Author(s):  
Hao Su

Traditional oil consumed transportation including vehicles and vessel produces green house gases, which is not environmentally-friendly. As a new type of energy-consumed unit, the fuel cell is popular due to its less emission level, high efficiency and low noise. This paper introduces the principle and characteristics of fuel cell, with further introduction to the application status of fuel cell system in the vehicle and maritime industry. Further aspects that need to be improved will be discussed and analyzed, in order to promote fuel cell system in transportation area in a large scale. It can be clearly seen that various factors (infrastructure, cost, durability, etc.) should be considered in the near future.


Author(s):  
G. G. Nalbandyan ◽  
S. S. Zholnerchik

The reduction in the cost of technologies for distributed generation involves an increasing decentralization of power generation and large-scale development of distributed sources around the world. This trend is a key change in both the characteristics of electricity consumption: it is becoming increasingly flexible and mobile, and the patterns of consumer behavior in the electricity market. Electricity consumers are becoming at the same time its suppliers and require revision of traditional regulation standards of the electricity market. The purpose of the article is to assess the influence of distributed generation on the economy of both enterprises and the country as a whole. To identify the effects of the introduction of distributed generation technologies, the method of case study analysis is used. The empirical analysis was carried out on the basis of twelve Russian companies that use their own energy sources. The selected companies belong to the following industries: industrial production, housing and communal services, retail trade, construction, agriculture. Technological and economic effects are revealed. Technological ones include: improving consumer reliability, energy security, involving local energy resources, optimizing load management and redundancy, providing the flexibility of smart grids (in terms of generation), reducing the load on the environment, including CO2 emissions. Economic effects: optimization of the load schedule, reduction of losses in the process of transmission/distribution of energy, expansion of cogeneration, etc., providing the consumer with the electricity of a given quality, saving losses in networks, reducing the cost of energy. The identified effects of the introduction of distributed generation technologies make it possible to highlight the advantages of regeneration facilities: high efficiency and the possibility of cogeneration and trigeneration, individual maneuvering capacity loading, high reliability of equipment, low cost of transportation of electricity, fuel usage of the by-products and the main production waste. In conclusion, recommendations are formulated on a set of measures for the development of industrial distributed generation in Russia at the Federal level.


Sign in / Sign up

Export Citation Format

Share Document