A Numerical Study on Performances of Centrifugal Compressor Stages With Different Radial Gaps

Author(s):  
K. Sato ◽  
L. He

A numerical study of 3D unsteady flows in centrifugal compressor stages solving the Navier-Stokes equations is presented. The emphasis is on the effect of the radial gap between blade rows on the aerodynamic performance. In the numerical tests, Krain’s centrifugal impeller was combined with a DCA (Double Circular Arc) type radial vaned diffuser. The compressor stages with three settings of radial gap ranging from 5 to 15 percent of the impeller trailing edge radius are configured and unsteady flow simulations are carried out to compare the time-averaged efficiencies. The performance predictions show that the efficiency is deteriorated if the radial gap between blade rows is reduced with intensified blade row interaction, which is in contradiction to the general trend for axial compressor stages. In the centrifugal compressors tested, wake chopping by diffuser vanes, which usually benefits efficiency in axial compressor stages, causes unfavourable wake compression through the diffuser passages to deteriorate the efficiency.

Author(s):  
P. C. Ivey ◽  
M. Swoboda

This paper describes work conducted as part of an experimental and numerical study of leakage effects by numerous Research and Industrial partners. For clarity it is presented in two parts. Part 1 presents measurements of tip-clearance flow for a 3rd stage rotor embedded in a four stage low-speed research compressor. The measurements are innovative and comprise measurements in the rotor relative frame of reference and 3D Laser time-of-flight Anemometry. Both techniques are relevant for improved understanding of multistage compressor flow dynamics and consequently, validated multistage CFD simulations. In part 2 of this paper (see Politis et al 1997b) it is shown that downstream of the rotor passage the location and size of a tip-clearance vortex, identified from both independent measurement techniques in Part 1, is in good agreement with 3D solutions of the Navier-Stokes equations modelling this compressor. These 3D numerical solutions reveal the tip-clearance flow structure using a multiblock grid technique.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


1996 ◽  
Vol 118 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Mohamed Selmi

This paper is concerned with the solution of the 3-D-Navier-Stokes equations describing the steady motion of a viscous fluid inside a partially filled spinning and coning cylinder. The cylinder contains either a single fluid of volume less than that of the cylinder or a central rod and a single fluid of combined volume (volume of the rod plus volume of the fluid) equal to that of the cylinder. The cylinder rotates about its axis at the spin rate ω and rotates about an axis that passes through its center of mass at the coning rate Ω. In practical applications, as in the analysis and design of liquid-filled projectiles, the parameter ε = τ sin θ, where τ = Ω/ω and θ is the angle between spin axis and coning axis, is small. As a result, linearization of the Navier-Stokes equations with this parameter is possible. Here, the full and linearized Navier-Stokes equations are solved by a spectral collocation method to investigate the nonlinear effects on the moments caused by the motion of the fluid inside the cylinder. In this regard, it has been found that nonlinear effects are negligible for τ ≈ 0.1, which is of practical interest to the design of liquid-filled projectiles, and the solution of the linearized Navier-Stokes equations is adequate for such a case. However, as τ increases, nonlinear effects increase, and become significant as ε surpasses about 0.1. In such a case, the nonlinear problem must be solved. Complete details on how to solve such a problem is presented.


1999 ◽  
Vol 5 (1) ◽  
pp. 17-33 ◽  
Author(s):  
Y. S. Choi ◽  
S. H. Kang

A computer code predicting the flows through the centrifugal compressor with the radial vaneless diffuser was developed and applied to investigate the detailed flowfields, i.e., secondary flows and jet-wake type flow pattern in design and off-design conditions. Various parameters such as slip factors, aerodynamic blockages, entropy generation and two-zone modeling which are widely used in design and performance prediction, were discussed.A control volume method based on a general curvilinear coordinate system was used to solve the time-averaged Navier–Stokes equations and SIMPLER algorithm was used to solve the pressure linked continuity equation. The standardk-εturbulence model was used to obtain the eddy viscosity. Performance of the code was verified using the measured data for the Eckardt impeller.


Author(s):  
David Gross ◽  
Yann Roux ◽  
Benjamin Rousse ◽  
François Pétrié ◽  
Ludovic Assier ◽  
...  

The problem of Vortex-Induced Vibrations (VIV) on spool and jumper geometries is known to present several drawbacks when approached with conventional engineering tools used in the study of VIV on risers. Current recommended practices can lead to over-conservatism that the industry needs to quantify and minimize within notably cost reduction objectives. Within this purpose, the paper will present a brief critical review of the Industry standards and more particularly focus on both experimental and Computational Fluid Dynamic (CFD) approaches. Both qualitative and quantitative comparisons between basin tests and CFD results for a 2D ‘M-shape’ spool model will be detailed. The results presented here are part of a larger experimental and numerical campaign which considered a number of current velocities, heading and geometry configurations. The vibratory response of the model will be investigated for one of the current velocities and compared with the results obtained through recommended practices (e.g. Shear7 and DNV guidelines). The strategy used by the software K-FSI to solve the fluid-structure interaction (FSI) problem is a partitioned coupling solver between fluid solver (FINE™/Marine) and structural solvers (ARA). FINE™/Marine solves the Reynolds-Averaged Navier-Stokes Equations in a conservative way via the finite volume method and can work on structured or unstructured meshes with arbitrary polyhedrons, while ARA is a nonlinear finite element solver with a large displacement formulation. The experiments were conducted in the BGO FIRST facility located in La Seyne sur Mer, France. Particular attention was paid towards the model design, fabrication, instrumentation and characterization, to ensure an excellent agreement between the structural numerical model and the actual physical model. This included the use of a material with low structural damping, the performance of stiffness and decay tests in air and in still water, plus the rationalization of the instrumentation to be able to capture the response with the minimum flow perturbation or interaction due to instrumentation.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


2013 ◽  
Vol 397-400 ◽  
pp. 783-788
Author(s):  
Xing Wei Zhang ◽  
Chao Wang ◽  
Hang Liu

This paper investigates the aerodynamic forces of several plunging wing models by means of computational fluid dynamics. A finite volume method was used to solve the two-dimensional unsteady incompressible Navier-Stokes equations. The forces and power efficiency have been calculated and compared between sets of different models. Current work found that the nonsymmetrical moving can enhance the lift and thrust forces. The numerical results also prove that the flexible wing model can be use to improve the efficiency and reduce the input. Additionally, a new conceptual model for flapping wing mechanism with active deformation and adaptive nonsymmetrical driving motion is proposed base on the numerical results.


Sign in / Sign up

Export Citation Format

Share Document