Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90° Ribs

Author(s):  
Tong-Miin Liou ◽  
Meng-Yu Chen ◽  
Meng-Hsiun Tsai

Laser-Doppler velocimetry and transient thermochromic liquid crystal measurements are presented to understand local fluid flow and surface heat transfer distributions in a rotating ribbed duct with a 180° sharp turn. The in-line 90° ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0×104 whereas the rotational number varied from 0 to 0.2. Results are compared with those of the rotating smooth duct flow in terms of maximum streamwise mean velocities (Umax/Ub) and turbulence intensities (u′max/Ub), skewness of mean velocity profiles, secondary flow pattern, turn-induced separation bubble, and turbulence anisotropy. Nusselt number ratio mappings are also provided on the leading and trailing walls. The relationships between the fluid flow and local heat transfer enhancement are also documented. It is found that the rotating ribbed duct flow provides higher Umax/Ub, u′max/Ub, and stronger total averaged secondary flow and, hence heat transfer is enhanced. Comparisons with heat transfer data published by other research groups are also made. Furthermore, simple linear correlations between regional averaged Nusselt number ratio and rotation number are developed.

2002 ◽  
Vol 124 (2) ◽  
pp. 260-268 ◽  
Author(s):  
Tong-Miin Liou ◽  
Meng-Yu Chen ◽  
Meng-Hsiun Tsai

Laser-doppler velocimetry and transient thermochromic liquid crystal measurements are presented to understand local fluid flow and surface heat transfer distributions in a rotating ribbed duct with a 180 deg sharp turn. The in-line 90-deg ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of 0.136 and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at 1.0×104 whereas the rotational number varied from 0 to 0.2. Results are compared with those of the rotating smooth duct flow in terms of maximum streamwise mean velocities Umax/Ub and turbulence intensities u′max/Ub, skewness of mean velocity profiles, secondary flow pattern, turn-induced separation bubble, and turbulence anisotropy. Nusselt number ratio mappings are also provided on the leading and trailing walls. The relationships between the fluid flow and local heat transfer enhancement are also documented. It is found that the rotating ribbed duct flow provides higher Umax/Ub,u′max/Ub, and stronger total averaged secondary flow and, hence heat transfer is enhanced. Comparisons with heat transfer data published by other research groups are also made. Furthermore, simple linear correlations between regional averaged Nusselt number ratio and rotation number are developed.


Author(s):  
Tong-Miin Liou ◽  
Chung-Chu Chen ◽  
Tzi-Wei Tsai

Detailed local Nusselt number distributions, streamwise mean flow patterns and cross-sectional secondary flow patterns, and friction factors in the first pass of a sharp turn two-pass square channel with various configurations of longitudinal vortex generator arranged on one wall were measured using transient liquid crystal thermography, laser-Doppler velocimetry, and pressure transducer probing, respectively. The Reynolds number, based on channel hydraulic diameter and bulk mean velocity, was fixed at 1.2 × 104. The vortex generator height-to-hydraulic diameter ratio and pitch-to-height ratio were 0.12 and 10, respectively. Comparisons in terms of heat transfer augmentation and uniformity and friction loss are first performed on 12 configurations of longitudinal vortex generator. The fluid dynamic mechanisms and wall confinement relevant to heat transfer enhancement are then documented for three-selected vortex generator models. In addition, the differences in fluid flow and heat transfer characteristics between a single vortex generator and a vortex generator array are addressed for the delta wing 1 U and 45° V U models which provide better thermal performance. The direction and strength of the secondary flow with respect to the heat transfer wall are found to be the most important fluid dynamic factors affecting the heat transfer promotion through the channel wall, followed by the convective mean velocity, and then the turbulent kinetic energy. Furthermore, the effects of the two-dimensional heat conduction near the vortex generator edge and unseen heat transfer areas on the Nusselt number estimation are documented in detail.


2005 ◽  
Vol 2005 (2) ◽  
pp. 152-160 ◽  
Author(s):  
Tong-Miin Liou ◽  
Shih-Hui Chen ◽  
Yi-Chen Li

The local turbulent fluid flow and heat transfer in a rotating two-pass square duct with 19 pairs of in-line90∘ribs have been investigated computationally. A Reynolds-averaged Navier-Stokes equation (RANS) with a two-layerk−εturbulence model was solved. The in-line90∘ribs were arranged on the leading and trailing walls with rib height-to-hydraulic diameter ratio and pitch-to-height ratio of0.136and 10, respectively. The Reynolds number, based on duct hydraulic diameter and bulk mean velocity, was fixed at1.0×104whereas the rotational number varied from 0 to0.2. Results are validated with previous measured velocity field and heat transfer coefficient distributions. The validation shows that the effect of rotation on the passage-averaged Nusselt number ratio can be predicted reasonably well; nevertheless, the transverse mean velocity and, in turn, the distribution of regional-averaged Nusselt number ratio are markedly underpredicted in the regions toward which the Coriolis force is directed. Further CFD studies are needed.


2003 ◽  
Vol 125 (1) ◽  
pp. 138-148 ◽  
Author(s):  
Tong-Miin Liou ◽  
Chung-Chu Chen ◽  
Meng-Yu Chen

Laser Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned smooth duct simulating the coolant passages employed in gas turbine blades under rotating and nonrotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter and bulk mean velocity was fixed at 1×104. The rotation number Ro was varied from 0 to 0.2. It is found that as Ro is increased, both the skewness (SK) of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, SK=2.3 Ro and U2+V2¯/Uh=2.3 Ro+0.4, and the magnitude of turbulence intensity level increases exponentially. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro=0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. The size of separation bubble immediately after the turn is found to diminish to null as Ro is increased from 0 to 0.2. A simple correlation is developed between the bubble size and Ro. A critical range of Ro responsible for the switch of faster moving flow from near the outer wall to the inner wall is identified. For both rotating and nonrotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local the heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in the overall enhancement of heat transfer is well addressed.


Author(s):  
Chung-Chu Chen ◽  
Tong-Miin Liou

Laser-Doppler velocimetry (LDV) measurements are presented of turbulent flow in a two-pass square-sectioned duct simulating the coolant passages employed in gas turbine blades under rotating and non-rotating conditions. For all cases studied, the Reynolds number characterized by duct hydraulic diameter (Dh) and bulk mean velocity (Ub) was fixed at 1 × 104. The rotating case had a range of rotation number (Ro = ΩDh/Ub) from 0 to 0.2. It is found that both the skewness of streamwise mean velocity and magnitude of secondary-flow velocity increase linearly, and the magnitude of turbulence intensity level increases non-linearly with increasing Ro. As Ro is increased, the curvature induced symmetric Dean vortices in the turn for Ro = 0 is gradually dominated by a single vortex most of which impinges directly on the outer part of leading wall. The high turbulent kinetic energy is closely related to the dominant vortex prevailing inside the 180-deg sharp turn. For the first time, the measured flow characteristics account for the reported spanwise heat transfer distributions in the rotating channels, especially the high heat transfer enhancement on the leading wall in the turn. For both rotating and non-rotating cases, the direction and strength of the secondary flow with respect to the wall are the most important fluid dynamic factors affecting local heat transfer distributions inside a 180-deg sharp turn. The role of the turbulent kinetic energy in affecting the overall enhancement of heat transfer is well addressed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Karthik Krishnaswamy ◽  
Suresh Sivan ◽  
Hafiz Muhammad Ali

Effective cooling of blades with a nominal pressure drop is essential for performance augmentation and thermal management of gas turbines. Hence, present work is aimed at determining the heat transfer enhancement and friction for W- and V-shaped ribs inside a rectangular cooling channel having hydraulic diameter ( D h ) of 0.048 m and aspect ratio ( AR ) 1 : 4. Ribs are fixed facing downstream with angle of attack ( α ) 45° on opposite walls. Pitch ( P ) between two successive ribs is 25 mm for both cases. Continuous V- and W-shaped ribs with height to channel hydraulic diameter ratio ( e / D h ) 0.052 and 0.0416 and pitch to height ratio ( P / e ) 10 and 12.5, respectively, have been examined for Reynolds number ( Re ) range 20000-80000. Heat transfer augmentation achieved at Re 80000 is 1.94 and 1.8 times higher than Re 20000 for V- and W-shaped ribs, respectively. Streamwise and spanwise variations in local Nusselt number ratio are highest for V-shaped ribs, which are estimated to be 31% and 12%. For W-shaped ribs, variations are 17.5% and 3.5%. Nusselt number ( Nu ) is highest along span length 0.5 w for V-shaped ribs due to dominance of apex induced secondary flow. For W-shaped ribs, Nusselt number along the span lengths is found to be nearly same view uniformity in secondary flow. Maximum enhancement ( Nu / N u o ) estimated for both the rib shapes is 3.9 at Re 20000. Due to increased rib height, friction losses for V-shaped ribs are higher than W-shaped ribs. Maximum friction loss increment is estimated to be 85% for V-shaped ribs and 42% for W-shaped ribs between Re 20000 and 40000. For both rib shapes, impact of ribs is found to be greatest at Re 40000. Thermohydraulic performance ( THP ) for W-shaped ribs is superior to V-shaped ribs. Best THP achieved for W- and V-shaped ribs are 3.7 and 3.4 at Re 20000.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Tong-Miin Liou ◽  
Shyy-Woei Chang ◽  
Shu-Po Chan ◽  
Yu-Shuai Liu

A parallelogram channel has drawn very little or no attention in the open literature although it appears as a cross-sectional configuration of some gas turbine rotor blades. Particle image velocimetry (PIV) is presented of local flow structure in a two-pass 90 deg ribbed-wall parallelogram channel with a 180 deg sharp turn. The channel has a cross-sectional equal length, 45.5 mm, of adjacent sides and two pairs of opposite angles are 45 deg and 135 deg. The rib height to channel height ratio is 0.1. All the measurements were performed at a fixed Reynolds number, characterized by channel hydraulic diameter of 32.17 mm and cross-sectional bulk mean velocity, of 10,000 and a null rotating number. Results are discussed in terms of the distributions of streamwise and secondary-flow mean velocity vector, turbulent intensity, Reynolds stress, and turbulent kinetic energy of the cooling air. It is found that the flow is not periodically fully developed in pitchwise direction through the inline 90 deg ribbed straight inlet and outlet leg. Pitchwise variation of reattachment length is revealed, and comparison with reported values in square channels is made. Whether the 180 deg sharp turn induced separation bubble exists in the ribbed parallelogram channel is also documented. Moreover, the measured secondary flow results inside the turn are successively used to explain previous heat transfer trends.


Author(s):  
Zhaoqing Ke ◽  
Jian Pu ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Zhiqiang Zhang ◽  
...  

The characteristics of fluid flow and heat transfer within a smooth three-pass channel of a real low pressure (LP) turbine blade have been investigated through experimental and numerical approaches. The serpentine channel consists of two inlet passes, two dividing walls, two 180 degree bends, twenty-five exits at the trailing edge, and two exits at the blade tip. In the experiments, purified water was used as working medium, the secondary flow patterns at five cross-sections were captured by a particle image velocimetry (PIV) system, the inlet Reynolds number was controlled by a turbine flow meter, and the mass flow rate ejected from each exit was measured by rotameters. Using the commercial software ANSYS CFX 13.0, numerical investigations were carried out. The practicability of four turbulence models, the SSG RSM, SST k-ω, RNG k-ε and standard k-ε models, were estimated. Through qualitative and quantitative comparisons of the secondary flow patterns, local velocity variation trends and mass flow rates between the experimental data and numerical results, the SSG RSM was selected as the most appropriate model in the following numerical investigations. Using ideal gas as working medium, the impacts of Reynolds numbers and rotation numbers on the heat transfer performances were numerically investigated. The numerical results predicted three interesting phenomena: 1) The locally averaged Nusselt number increases generally with the inlet Reynolds numbers. However, the increasing amplitude is significantly different from the correlation suggested by Dittus-Boelter, Nuo = 0.023Re0.8Pr0.4. The effect of the Reynolds number on the Nusselt number is substantially enhanced due to the serpentine channel design with two 180 degree-bends. The enhancement amplitude is described by two fitted coefficients based on Dittus-Boelter correlation. 2) Under a rotation condition, in the 1st and 3rd passes, the enhancement amplitude of the average Nusselt number on the pressure side (PS) is more significant than that on the suction side (SS), whereas in the 2nd pass, the enhancement amplitude on the PS is lower than that on the SS. 3) In the 3rd pass, a higher rotation number leads to a more uniform distribution of the local Nusselt number along the streamwise direction on both the PS and SS.


Author(s):  
Tong-Miin Liou ◽  
Shyy Woei Chang ◽  
Shu-Po Chan ◽  
Yu-Shuai Liu

A parallelogram channel has drawn very little or no attention in the open literature although it appears as a cross-sectional configuration of some gas turbine rotor blades. Particle Image velocimetry is presented of local flow structure in a two-pass 90-deg ribbed-wall parallelogram channel with a 180-deg sharp turn. The channel has a cross-sectional equal length, 45.5 mm, of adjacent sides and two pairs of opposite angles are 45-deg and 135-deg. The rib height to channel height ratio is 0.1. All the measurements were performed at a fixed Reynolds number, characterized by channel hydraulic diameter of 32.17 mm and cross-sectional bulk mean velocity, of 10000 and a null rotating number. Results are discussed in terms of the distributions of streamwise and secondary-flow mean velocity vector, turbulent intensity, Reynolds stress, and turbulent kinetic energy of the cooling air. It is found that the flow is not periodically fully developed in pitchwise direction through the inline 90-deg ribbed straight inlet and outlet leg. Pitchwise variation of reattachment length is revealed and comparison with reported values in square channels is made. Whether the 180-deg sharp turn induced separation bubble exists in the ribbed parallelogram channel is also documented. Moreover, the measured secondary flow results inside the turn are successively used to explain previous heat transfer trends.


Author(s):  
Bin Wu ◽  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Abstract In this paper, the combined effects of ribs and double-layer, dome-shaped turning vanes on heat transfer and pressure drop are investigated in an idealized U-bend channel. Five kinds of ribs including transverse ribs, 45° ribs, 135° ribs, V-shaped ribs, and reverse V-shaped ribs combined with one kind of double-layer, dome-shaped turning vanes are applied. Baseline results are compared with the above composite cooling structures. Numerical simulations are performed by solving 3D, steady Reynolds-averaged Navier-Stokes (RANS) equations with k-ω turbulence model. The channel aspect ratio is 1:2 and its hydraulic diameter is 93.13 mm, respectively. Based on the cooling air inlet velocity and the channel inlet hydraulic diameter, the inlet Reynolds numbers are ranging from 100,000 to 440,000. The detailed three-dimensional fluid flow, pressure and heat transfer distributions are presented. Moreover, the thermal performances of the U-bend channel are also evaluated and compared with different cases. The results revealed that combined with the double-layer, dome-shaped turning vanes, the transverse ribs case has the best thermal performance at the tip wall, and the reverse V-shaped ribs case is the best for the leading wall. The pressure drop of the channel with double-layer, dome-shaped turning vanes without any rib turbulator is the lowest, and that of the channel with inclined ribs is significantly higher than that of the channel with transverse ribs. The superposition of the secondary flow induced by the ribs and the Dean vortex induced by the 180° sharp turn has a marked impact on the flow and heat transfer in the channel. In the double-layer, dome-shaped turning vanes channel, the mass flow distribution of the coolant also affects the heat transfer on the tip wall of the channel, and the ribs can adjust the mass flow distribution. The helical vortex superposed by the mainstream flow and the secondary flow induced by the ribs represents typical flow phenomenon in ribbed channels. The flow and development of the helical vortex are the main factors affecting the heat transfer on the leading/trailing walls.


Sign in / Sign up

Export Citation Format

Share Document