Turbulent Spots in Strong Adverse Pressure Gradients: Part 2 — Spot Propagation and Spreading Rates

Author(s):  
A. D’Ovidio ◽  
J. A. Harkins ◽  
J. P. Gostelow

The study of turbulent spots in strong adverse pressure gradients is of current interest in turbomachinery research. The aim of this investigation is to use information gathered from boundary layer transition and laminar separation, in wind tunnel tests on flat plates, to predict the equivalent phenomena occurring on turbomachinery blade surfaces. In Part 1 turbulent spot behavior was documented for two Reynolds numbers, corresponding to a laminar separation bubble (LSB) and an incipient separation condition (IS). In Part 2 further results are reported characterizing typical spot propagation and spreading rates and serving to validate or modify existing correlations for predicting transition length.

Author(s):  
A. D’Ovidio ◽  
J. A. Harkins ◽  
J. P. Gostelow

The understanding of periodic laminar-turbulent transition is crucial for flows over turbomachinery blading. Most turbomachinery blades are swept by turbulent wakes from upstream blading and recent works on transition in turbomachinery have attempted to study — and eventually predict — the nature of boundary layer transition induced by these wakes. This work reports on the characteristics of turbulent spots in strong adverse pressure gradients. In Part I the spot behavior is described. Phase-averaged velocity traces, velocity perturbation and disturbance level contours performed at two Reynolds numbers are described. In Part II (a companion paper) the spot propagation and spreading rates are reported. These experimental data are required for validating or modifying existing correlations for transition length prediction.


Author(s):  
F. Rasi Marzabadi ◽  
M. R. Soltani ◽  
M. Masdari

This investigation addresses the boundary layer study of a plunging airfoil. It specifically concerns the effect of reduced frequency on transition and separation/reattachment of the unsteady boundary layer. The wind tunnel measurements were conducted using multiple hot-film sensors, pressure transducers and a boundary-layer rake, at Reynolds numbers of 0.42 to 0.84 million, and over reduced frequencies from 0.05 to 0.11. It was observed the boundary layer transition occurs by a laminar separation bubble. The unsteady laminar separation is promoted (delayed) by the increase of the reduced frequency in upstroke (downstroke) portion of the equivalent angle of attack.


Author(s):  
W. J. Solomon

Multiple-element surface hot-film instrumentation has been used to investigate boundary layer development in the 2 stage Low Speed Research Turbine (LSRT). Measurements from instrumentation located along the suction surface of the second stage nozzle at mid-span are presented. These results contrast the unsteady, wake-induced boundary layer transition behaviour for various turbine configurations. The boundary layer development on two new turbine blading configurations with identical design vector diagrams but substantially different loading levels are compared with a previously published result. For the conventional loading (Zweifel coefficient) designs, the boundary layer transition occurred without laminar separation. At reduced solidity, wake-induced transition started upstream of a laminar separation line and an intermittent separation bubble developed between the wake-influenced areas. A turbulence grid was installed upstream of the LSRT turbine inlet to increase the turbulence level from about 1% for clean-inlet to about 5% with the grid. The effect of turbulence on the transition onset location was smaller for the reduced solidity design than the baseline. At the high turbulence level, the amplitude of the streamwise fluctuation of the wake-induced transition onset point was reduced considerably. By clocking the first stage nozzle row relative to the second, the alignment of the wake-street from the first stage nozzle with the suction surface of the second stage nozzle was varied. At particular wake clocking alignments, the periodicity of wake induced transition was almost completely eliminated.


Author(s):  
Antoine Ducoin ◽  
Jacques Andre´ Astolfi ◽  
Marie-Laure Gobert

In this paper, we investigate through an experimental approach the laminar to turbulent transition in the boundary-layer flow along a hydrofoil at a Reynolds number of 7.5 × 105, together with the vibrations of the hydrofoil induced by the transition. The latter is caused by a Laminar Separation Bubble (LSB) resulting from a laminar separation of the boundary-layer. The experiments, conducted in the hydrodynamic tunnel of the Research Institute of the French Naval Academy, are based on wall pressure and flow velocity measurements along a rigid hydrofoil, which enable a characterization of the Laminar Separation Bubble and the identification of a vortex shedding at a given frequency. Vibrations measurements are then carried out on a flexible hydrofoil in the same operating conditions. The results indicate that the boundary-layer transition induces important vibrations, whose characteristics in terms of frequency and amplitude depend on the vortex shedding frequency, and can be coupled with natural frequencies.


Author(s):  
Stephen Riley ◽  
Mark W. Johnson ◽  
John C. Gibbings

Boundary layer transition has been studied on two blades of constant 0.5 and 1 metre radius of curvature with free stream turbulence levels of 0.7%, 2.6% and 7.2%. Zero pressure gradients were used throughout. Strong Gortler vortices developed in the boundary layer which led to growth rates of up to ten times the flat plate rate. The boundary layer profile was also highly distorted by the vortices. Transition correlation techniques for flat plates proved totally inadequate for the concave surface data, but a method of obtaining correlations for these surfaces was suggested by considering the inner critical region of the boundary layer alone.


Author(s):  
S. K. Roberts ◽  
M. I. Yaras

This paper presents measurements of free-stream turbulence, streamwise pressure gradients and flow Reynolds number effects on attached-flow transition. The measurements were performed on a flat plate, at free-stream turbulence intensities ranging from 0.5% to 9.0%, four Reynolds numbers, and several streamwise pressure distributions, including ones that are typical of the suction side pressures of axial turbine blades. Based on the results, the extent of upstream movement of transition location with free-stream turbulence, the changes in transition length with variations in the streamwise pressure gradients, and the sensitivity of these trends to flow Reynolds number are quantified. Interpretation of the measurements is based primarily on streamwise and cross-stream intermittency distributions extracted from the velocity traces of hot-wire traverses. The measured transition inception locations and transition lengths are used to evaluate mathematical models available in the published literature. A modification is proposed to a transition length model to improve the prediction of the streamwise intermittency distribution.


1990 ◽  
Vol 112 (2) ◽  
pp. 196-205 ◽  
Author(s):  
G. J. Walker ◽  
J. P. Gostelow

Existing transition models are surveyed and deficiencies in previous predictions, which seriously overestimate transition length under an adverse pressure gradient, are discussed. A new model for transition in an adverse pressure gradient situation is proposed and experimental results are provided that confirm its validity. A correlation for transition length is advanced that incorporates both Reynolds number and pressure gradient effects. Under low free-stream turbulence conditions the basic mechanism of transition is laminar instability. There are, however, physical differences between zero and adverse pressure gradients. In the former case, transition occurs randomly, due to the breakdown of laminar instability waves in sets. For an adverse pressure gradient, the Tollmien–Schlichting waves appear more regularly with a well-defined spectral peak. As the adverse pressure gradient is increased from zero to the separation value the flow evolves continuously from random to periodic behavior and the dimensionless transition length progressively decreases.


2021 ◽  
Author(s):  
Antoine Dufau ◽  
Julien Marty ◽  
Daniel Man ◽  
Estelle Piot

Abstract The present study focuses on the very high-lift T106C cascade with passing wakes and aims to validate the γ - Re θ ¯ model of Menter-Langtry used to predict laminar-turbulent transition based on unsteady Reynolds-Averaged Navier-Stokes simulations. The comparison to experimental data provided by Von Karman Institute, shows that the transition model is able to capture the influence of passing wakes on transition phenomenon. Like the experiments, the simulations show a reduction of the time-averaged separation bubble length and of the overall losses in the presence of passing wakes. For this numerical study, four other wakes have been generated in order to study the influence of wake parameters on the transition onset, on the laminar separation bubble formation and on the turbine cascade performances. For a given averaged turbulence intensity and total pressure deficit, thinner wakes seem to have a more positive effect on boundary layer, reducing the separation and the overall losses.


1963 ◽  
Vol 67 (636) ◽  
pp. 783-790 ◽  
Author(s):  
Julian W. Ward

SummaryA survey of information on laminar separation bubbles and their effect on the stalling characteristics of aerofoils is presented. It is shown that there are two principal kinds of bubbles and that their existence can be predicted. It is believed that their behaviour may be related to the kind of boundary layer transition process present.It is intended that a second part of this paper will describe the characteristics of aerofoils at Reynolds numbers typical of model aircraft and show how the observed phenomena are related to the behaviour of laminar separation bubbles.


Author(s):  
G. J. Walker ◽  
J. P. Gostelow

Existing transition models are surveyed and deficiencies in previous predictions, which seriously overestimate transition length under an adverse pressure gradient, are discussed. A new model for transition in an adverse pressure gradient situation is proposed and experimental results are provided which confirm its validity. A correlation for transition length is advanced which incorporates both Reynolds number and pressure gradient effects. Under low free-stream turbulence conditions the basic mechanism of transition is laminar instability. There are, however, physical differences between zero and adverse pressure gradients. In the former case transition occurs randomly, due to the breakdown of laminar instability waves in sets. For an adverse pressure gradient the Tollmien-Schlichting waves appear more regularly with a well-defined spectral peak. As the adverse pressure gradient is increased from zero to the separation value the flow evolves continuously from random to periodic behavior and the dimensionless transition length progressively decreases.


Sign in / Sign up

Export Citation Format

Share Document