501F/M701F Gas Turbine Uprating

Author(s):  
E. Akita ◽  
H. Arimura ◽  
Y. Tomita ◽  
M. Kuwabara ◽  
K. Tsukagoshi

The share of the gas turbine combined cycle plants tends to increase rapidly in the world of power generation. Under the circumstances, MHI is developing the several kinds of gas turbine to meet each customer’s needs. The ‘F’ series’ engine, which has a firing temperature of 1350–1400 degree C, is predominant in the current market, and the reliability improvement is constantly performed. As a result, the operational hours of 50,000, and the combined cycle efficiency of 55–57% (LHV) is achieved for F-series combined cycle. During the operating experience, any events occurred in field operation is solved. Also, countermeasure was implemented on every machine. Furthermore, robust design improvement is introduced, and commercial operation of the design achieved higher reliability and availability. In this paper, the operating experiences, design improvements and the F series gas turbine uprating program are introduced.

Author(s):  
M. Huth ◽  
A. Heilos ◽  
G. Gaio ◽  
J. Karg

The Integrated Gasification Combined Cycle concept is an emerging technology that enables an efficient and clean use of coal as well as residuals in power generation. After several years of development and demonstration operation, now the technology has reached the status for commercial operation. SIEMENS is engaged in 3 IGCC plants in Europe which are currently in operation. Each of these plants has specific characteristics leading to a wide range of experiences in development and operation of IGCC gas turbines fired with low to medium LHV syngases. The worlds first IGCC plant of commercial size at Buggenum/Netherlands (Demkolec) has already demonstrated that IGCC is a very efficient power generation technology for a great variety of coals and with a great potential for future commercial market penetration. The end of the demonstration period of the Buggenum IGCC plant and the start of its commercial operation has been dated on January 1, 1998. After optimisations during the demonstration period the gas turbine is running with good performance and high availability and has exceeded 18000 hours of operation on coal gas. The air-side fully integrated Buggenum plant, equipped with a Siemens V94.2 gas turbine, has been the first field test for the Siemens syngas combustion concept, which enables operation with very low NOx emission levels between 120–600 g/MWh NOx corresponding to 6–30 ppm(v) (15%O2) and less than 5 ppm(v) CO at baseload. During early commissioning the syngas nozzle has been recognised as the most important part with strong impact on combustion behaviour. Consequently the burner design has been adjusted to enable quick and easy changes of the important syngas nozzle. This design feature enables fast and efficient optimisations of the combustion performance and the possibility for easy adjustments to different syngases with a large variation in composition and LHV. During several test runs the gas turbine proved the required degree of flexibility and the capability to handle transient operation conditions during emergency cases. The fully air-side integrated IGCC plant at Puertollano/Spain (Elcogas), using the advanced Siemens V94.3 gas turbine (enhanced efficiency), is now running successfully on coal gas. The coal gas composition at this plant is similar to the Buggenum example. The emission performance is comparable to Buggenum with its very low emission levels. Currently the gas turbine is running for the requirements of final optimization runs of the gasifier unit. The third IGCC plant (ISAB) equipped with Siemens gas turbine technology is located at Priolo near Siracusa at Sicilly/Italy. Two Siemens V94.2K (modified compressor) gas turbines are part of this “air side non-integrated” IGCC plant. The feedstock of the gasification process is a refinery residue (asphalt). The LHV is almost twice compared to the Buggenum or Puertollano case. For operation with this gas, the coal gas burner design was adjusted and extensively tested. IGCC operation without air extraction has been made possible by modifying the compressor, giving enhanced surge margins. Commissioning on syngas for the first of the two gas turbines started in mid of August 1999 and was almost finished at the end of August 1999. The second machine followed at the end of October 1999. Since this both machines are released for operation on syngas up to baseload.


Author(s):  
Atsuo Okubo ◽  
Yoshitaka Mori ◽  
Yoshikazu Nadai ◽  
Hiroshi Kanki

This paper describes the vibration analysis technology of MW-701D Gas Turbine which was developed by Mitsubishi Heavy Industries, Ltd. for 50 Hz utilities. MW-701D is the highest performance gas turbine available with a firing temperature of 1,154°C for base load operation. It is employed by the 1,090 MW combined cycle plant, one of the largest of its kind in the world, and the plant began commercial operation at half of the total capacity of 1,090 MW in December, 1984. The plant was designed to supply base load electric power generation by burning imported liquefied natural gas (LNG) fuel. This paper describes the general description of the combined cycle plant and the vibration characteristics of MW-701D Gas Turbine.


Author(s):  
Jeffrey Goldmeer ◽  
Paul Glaser ◽  
Bassam Mohammad

Abstract The Kingdom of Saudi Arabia has seen significant transformation in power generation in the past 10 years. There has been an increase in the number of F-class combined cycle power plants being developed and brought into commercial operation. There has also been a shift to the use of natural gas as primary fuel. At the same time, there has been an interest in switching the back-up fuel for new power plants from refined distillates to domestic crude oils. Both Arabian Super Light (ASL) and Arabian Extra Light (AXL) have been proposed for use in new F-class gas turbine combined cycle power plants. This paper provides details on the combustion evaluations of ASL and AXL, as well as the first field usage of ASL in a gas turbine.


2017 ◽  
Vol 139 (12) ◽  
pp. 48-50 ◽  
Author(s):  
Christian Vandervort ◽  
Todd Wetzel ◽  
David Leach

This article presents an overview of GE’s HA gas turbines that represent the most reliable and efficient machines in the world for converting natural gas into electricity. In a combined cycle arrangement, these turbines provide cost-effective and clean generation that offers reliable electricity to an expanding, global population. The 7/9HA turbine is based upon the original H-class 4-stage gas turbine with exception of simplification by eliminating steam cooling. Metals chosen for the 7/9HA are proven alloys with over 50 million hours of operation on F- and H-class gas turbines. The first 9HA.01 entered commercial operation on June 17, 2016 at the Électricité de France Bouchain plant, located in the Nord Pas-de-Calais region of France. GE followed the Guinness Book of World Records’ definition for a consistent and traceable operating condition for establishing efficiency in world records. Under the oversight of Guinness World Records staff, GE set the record for the world’s most efficient combined-cycle power plant with an efficiency of 62.22% while producing more than 605 MW of electricity.


Author(s):  
V. Kallianpur ◽  
D. Stacy ◽  
Y. Fukuizumi ◽  
H. Arimura ◽  
S. Uchida

Seven G gas turbines from Mitsubishi are in commercial operational at various combined cycle power plants since the first Mitsubishi G gas turbine was inroduced in 1997. The combined operating time on the fleet exceeds over 78,000 actual hours. Additional power plants using Mitsubishi G-series gas turbines are in advanced stages of commissioning in the U.S.A., and are expected to be in commercial operation in 2003. This paper describes operating experience of the Mitsubishi G-series gas turbines, which apply steam-cooling instead of air-cooling to cool the combustor liners. The paper discusses design enhancements that were made to the lead M501G gas turbine at Mitsubishi’s in-house combined cycle power plant facility. It also addresses the effectiveness of those enhancements from the standpoint of hot parts durability and reliability at other power plants that are in commercial operation using Mitsubishi G gas turbines.


Author(s):  
Christian Vandervort

The power generation industry is facing unprecedented challenges. High fuel costs combined with an increased penetration of renewable power has resulted in greater demand for high efficiency and operational flexibility. Imperative for a reduced carbon footprint places an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants provide reliable, dispatch-able generation with low cost of electricity, reduced environmental impact, and improved flexibility. GE’s air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net, combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, exceeds 64% combined cycle efficiency (net, ISO) in a 1 × 1, single-shaft configuration. In parallel, the power plant has been configured for rapid construction and commissioning enabling timely revenue generation for power plant developers and owners. The HA platform is enabled by 1) use of a simple air-cooling system for the turbine section that does not require external heat exchange and the associated cost and complexity, and 2) use of well-known materials and coatings with substantial operating experience at high firing temperatures. Key technology improvements for the HA’s include advanced cooling and sealing, utilization of unsteady aerodynamic methodologies, axially staged combustion and next generation thermal barrier coating (TBC). Validation of the architecture and technology insertion is performed in a dedicated test facility over the full operating range. As of February 2018, a total of 18 HA power plants have achieved COD (Commercial Operation). This paper will address three topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation and 3) integrated power plant commissioning and operating experience.


Author(s):  
Christian Vandervort ◽  
David Leach ◽  
David Walker ◽  
Jerry Sasser

Abstract The power generation industry is facing unprecedented challenges. High fuel costs and increased penetration of renewable power have resulted in greater demand for high efficiency and operational flexibility. Imperatives to reduce carbon footprint place an even higher premium on efficiency. Power producers are seeking highly efficient, reliable, and operationally flexible solutions that provide long-term profitability in a volatile environment. New generation must also be cost-effective to ensure affordability for both domestic and industrial consumers. Gas turbine combined cycle power plants meet these requirements by providing reliable, dispatchable generation with a low cost of electricity, reduced environmental impact, and broad operational flexibility. Start times for large, industrial gas turbine combined cycles are less than 30 minutes from turning gear to full load, with ramp rates from 60 to 88 MW/minute. GE introduced the 7/9HA industrial gas turbine product portfolio in 2014 in response to these demands. These air-cooled, H-class gas turbines (7/9HA) are engineered to achieve greater than 63% net combined cycle efficiency while delivering operational flexibility through deep, emission-compliant turndown and high ramp rates. The largest of these gas turbines, the 9HA.02, is designed to exceed 64% combined cycle efficiency (net, ISO) in a 1×1, single-shaft (SS) configuration. As of December 2018, a total of 32 7/9HA power plants have achieved COD (Commercial Operation Date) while accumulating over 220,000 hours of operation. These plants operate across a variety of demand profiles including base load and load following (intermediate) service. Fleet leaders for both the 7HA and 9HA have exceeded 12,000 hours of operation, with multiple units over 8,000 hours. This paper will address four topics relating to the HA platform: 1) gas turbine product technology, 2) gas turbine validation, 3) integrated power plant commissioning and operating experience, and 4) lessons learned and fleet reliability.


Author(s):  
Junichi Koike ◽  
Shinobu Nakamura ◽  
Hajime Watanabe ◽  
Tsuyoshi Imaizumi

Pressurized Fluidized Bed Combustion Combined Cycle Power Generation, namely, PFBC is the clean coal technology, utilizing gas turbine and steam turbine, which is high efficient and friendly to earth. In early 90’s, 70 MW class PFBCs had started demonstration and commercial operation all over the world. Kyushu Electric Power Company (KyEPCO) decided to apply this technology as the real commercial unit, the world largest capacity 360MW, and put into commercial operation in July 2001. To apply PFBC to the large-scale commercial plant, it is essential to demonstrate the higher efficiency than any other conventional coal firing units. In order to achieve this, the gas turbine with higher operation pressure and advanced supercritical steam condition for steam turbine were applied. The reduction by size and weight of the equipment is the vital must to realize large scale PFBC, as 360MW unit. To reduce the pressure vessel size, the unique design of hexagon furnace was applied to install it efficiently in smaller vessel. The plant has started commercial operation in July 2001 and has well demonstrated PFBC’s technology advantages as planned. It achieved the efficiency, 41.8% as net value based on HHV, which is the highest level among existing coal fired power plants. It also verifies smooth operation, 3%L/min of Load following capability, 3 hours of hot start-up, that is comparable to conventional pulverized coal fired unit.


2017 ◽  
Author(s):  
Andrew Detor ◽  
◽  
Richard DiDomizio ◽  
Don McAllister ◽  
Erica Sampson ◽  
...  

Author(s):  
Christian L. Vandervort ◽  
Mohammed R. Bary ◽  
Larry E. Stoddard ◽  
Steven T. Higgins

The Externally-Fired Combined Cycle (EFCC) is an attractive emerging technology for powering high efficiency combined gas and steam turbine cycles with coal or other ash bearing fuels. The key near-term market for the EFCC is likely to be repowering of existing coal fueled power generation units. Repowering with an EFCC system offers utilities the ability to improve efficiency of existing plants by 25 to 60 percent, while doubling generating capacity. Repowering can be accomplished at a capital cost half that of a new facility of similar capacity. Furthermore, the EFCC concept does not require complex chemical processes, and is therefore very compatible with existing utility operating experience. In the EFCC, the heat input to the gas turbine is supplied indirectly through a ceramic heat exchanger. The heat exchanger, coupled with an atmospheric coal combustor and auxiliary components, replaces the conventional gas turbine combustor. Addition of a steam bottoming plant and exhaust cleanup system completes the combined cycle. A conceptual design has been developed for EFCC repowering of an existing reference plant which operates with a 48 MW steam turbine at a net plant efficiency of 25 percent. The repowered plant design uses a General Electric LM6000 gas turbine package in the EFCC power island. Topping the existing steam plant with the coal fueled EFCC improves efficiency to nearly 40 percent. The capital cost of this upgrade is 1,090/kW. When combined with the high efficiency, the low cost of coal, and low operation and maintenance costs, the resulting cost of electricity is competitive for base load generation.


Sign in / Sign up

Export Citation Format

Share Document