scholarly journals Experimental Performance in Annular Cascade of Variable Trailing-Edge Flap, Axial-Flow Compressor Inlet Guide Vanes

Author(s):  
T. H. Okiishi ◽  
G. H. Junkhan ◽  
G. K. Serovy

Aerodynamic performance of a variable-geometry axial-flow compressor inlet guide vane configuration for a gas turbine unit was determined in a series of annular cascade tests. The variable-geometry vanes used uncambered, symmetrical airfoil sections as the basic blade profile with the rear 70 percent of the vane profile movable as a trailing-edge flap. Vane flap mechanical setting angles of 0 to 50 deg measured from the axial direction were possible, and performance parameters were determined over this range of angles. Turning angles followed a general trend obtained with Carter’s rule for accelerating cascades with the presently measured values tending to be lower than those obtained with Carter’s rule at higher setting angles. For large camber angles (greater than 35 deg) zero-incidence blade element total-pressure loss coefficients for the 50 percent passage location of the flapped vanes tested were higher than those that might have been obtained with a continously cambered vane row of the same solidity and camber.

Author(s):  
Theoklis Nikolaidis ◽  
Periclis Pilidis ◽  
J. A. Teixeira ◽  
V. Pachidis

A numerical approach was used to evaluate the liquid water film thickness and its motion on an axial flow compressor rotor blade under water ingestion conditions. By post-processing blading data and using computer programs to create the blades and their computational grid, the global computational domain of the first stage of an axial flow compressor was built. The flow field within the domain was solved by CFX-Tascflow, which is a commercial CFD code commonly used in turbomachinery. The computational domain consists of an extended inlet, an inlet guide vane, a rotor and a stator blade. Having solved the flow field at Design Point, the inlet guide vane blade was re-positioned to account for changes in idle speed. At that speed, the effects of water ingestion are expected to be more significant on gas turbine engine performance. Several cases with water ingestion were studied, changing parameters like water mass and compressor rotational speed. A FORTRAN computer program was created to calculate the water film height and speed. The extra torque needed by the compressor to keep running at the same rotational speed, was also calculated. The considerable increase in torque was confirmed by experimental observations according to which water ingestion had a detrimental effect on gas turbine operation.


1975 ◽  
Author(s):  
F. A. E. Breugelmans

A supersonic compressor stage has been designed for a high pressure ratio at a tip relative inlet Mach number of 2. The stage was operated in the original configuration, but serious inlet stall occurred at part-speed operation. An inlet blockage ring, a bleed system and a variable geometry inlet guide vane have been analyzed and applied to this configuration. The results obtained with the bleed system in the complete stage are presented. The rotor performance is discussed and compared with the stage performance.


Author(s):  
Cleverson Bringhenti ◽  
Jesuino Takachi Tomita ◽  
Joa˜o Roberto Barbosa

This work presents the performance study of a 1 MW gas turbine including the effects of blade cooling and compressor variable geometry. The axial flow compressor, with Variable Inlet Guide Vane (VIGV), was designed for this application and its performance maps synthesized using own high technological contents computer programs. The performance study was performed using a specially developed computer program, which is able to numerically simulate gas turbine engines performance with high confidence, in all possible operating conditions. The effects of turbine blades cooling were calculated for different turbine inlet temperatures (TIT) and the influence of the amount of compressor-bled cooling air was studied, aiming at efficiency maximization, for a specified blade life and cooling technology. Details of compressor maps generation, cycle analysis and blade cooling are discussed.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


1998 ◽  
Vol 4 (4) ◽  
pp. 217-231
Author(s):  
Heinz E. Gallus

Detailed results of unsteady flow measurements in a stator-rotor-stator assembly of an axial-flow turbine as well as an inlet guide vane-rotor-stator formation of an axial-flow compressor are presented in this paper.The measurements include the time-dependent 3-D velocity vector fields in the axial gaps between the blade rows by means of triple-hot wire-technique, furthermore the total pressure field downstream of the blade rows by means of semiconductor total pressure probes and the unsteady flow field determination in the rotor passages by LDV-technique. Special semiconductor pressure measurements along the casing all over the rotor tip clearance permit detailed discussion of the rotor tip clearance flows.The conclusion of the measured data provides a new and very instructive view of the physics of the unsteady blade-row interaction in axial-flow turbines and compressors.


Author(s):  
Kirubakaran Purushothaman ◽  
N. R. Naveen Kumar ◽  
Vidyadheesh Pandurangi ◽  
Ajay Pratap

Abstract Variability in stator vanes is a widely used technique to improve the stability and efficiency of axial flow compressor in gas turbine engines. Most of the modern aircraft jet engines use variable stator vanes in both low pressure and high pressure compressors primarily for off-design performance. This study discusses in detail about the effect of stator variability in a three stage low pressure axial compressor at design and off-design conditions. Computational flow analysis were carried out for the three stage low pressure compressor with variability in inlet guide vane and first stage stator blade. Detailed investigation on flow physics was carried out in rotor blade passages with stator variability. At off-design speeds, the reduction in flow velocity is lower than the reduction in blade tip speed. This leads to mismatch in flow angles and inlet blade angles causing high incidence and large flow separation in blade passage. This results in poor aerodynamic stability of the axial compressor at off-design speeds. In this study, aerodynamic performance of compressor is evaluated from 70% to 100% design speeds with different stagger angle setting of inlet guide vane at each speed. Further, to improve 2nd stage rotor performance, variability was introduced in 1st stage stator blade and performance was evaluated. Compressor test results are compared with CFD data for design and off-design speeds.


1993 ◽  
Vol 115 (1) ◽  
pp. 197-206 ◽  
Author(s):  
S. R. Manwaring ◽  
S. Fleeter

A series of experiments is performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake-generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained that describe the fundamental unsteady aerodynamic gust interaction phenomena on the first-stage rotor blades of a research axial flow compressor generated by the wakes from the inlet guide vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.


1989 ◽  
Vol 111 (4) ◽  
pp. 434-441 ◽  
Author(s):  
F. E. McCaughan

Using Cornell’s supercomputing facilities, we have carried out an extensive study of the Moore–Greitzer model, which gives accurate and reliable information about compressor instability. The bifurcation analysis in the companion paper shows the dependence of the mode of compressor response on the shape of the rotating stall characteristic. The numerical results verify and extend this with a more accurate representation of the characteristic. The effect of the parameters on the shape of the rotating stall characteristic is investigated, and it is found that the parameters with the strongest effects are the inlet length, and the shape of the compressor pressure rise versus mass flow diagram (i.e., tall diagrams versus shallow diagrams). We also discuss the effects of inlet guide vane loss on the characteristic. An evaluation is made of the h′ = −g approximation, and a spectral analysis of the rotating stall cell given by the full model suggests why this breaks down.


Sign in / Sign up

Export Citation Format

Share Document