scholarly journals Gas Turbine Vanadium Inhibition

Author(s):  
G. E. Krulls

The mechanism of gas turbine vanadium inhibition is discussed as well as corrosion, hot gas path deposition and exhaust gas emissions. A cost comparison is presented for the various types of inhibition based on a typical power plant situation. A brief description is provided of three different kinds of inhibition systems. The aim of this paper is to provide the gas turbine user with a practical evaluation of the various inhibition processes.

Author(s):  
Hannah Seliger ◽  
Andreas Huber ◽  
Manfred Aigner

This paper presents a comprehensive experimental investigation of a newly designed single-stage combustion system based on the flameless oxidation (FLOX®) technology for a small scale micro gas turbine (MGT). It is used for a combined heat and power plant (CHP) with an electrical power output of 3 kW, using natural gas as fuel. Flameless oxidation is characterized by a flame distributed over a large volume and a high internal recirculation of flue gas. Considering the high combustor inlet temperatures up to 1000 K as required for this application, the FLOX®-combustion concept offers various advantages compared to swirl-stabilized combustion systems in terms of flashback risk and exhaust gas emissions. This paper describes the detailed characterization of the jet-stabilized combustor. Two versions of the combustor were tested, one generic and one modified version suitable for the integration into the micro gas turbine at an atmospheric test rig with optical access. The stable operating range, including lean blow out (LBO) limits, was determined for varying equivalence ratios, thermal powers and preheat temperatures. The influence of these parameters on the combustion characteristics is discussed. Furthermore, the shape and location of the heat release zone is investigated with OH*-chemiluminescence (OH* CL). The exhaust gas emissions NOx, CO and unburned hydrocarbon (UHC) were also measured. The results demonstrate that the developed combustor design ensures stable and reliable performance. It also offers a high operational flexibility and low pressure loss with NOx, CO and UHC emissions far below regulation limits for all relevant engine conditions.


Author(s):  
Kristen LeClair ◽  
Thomas Schmitt ◽  
Garth Frederick

Economic and regulatory requirements have transformed today’s power plant operations. High reserve margins and increased fuel costs have driven combined cycle plants that were once dispatched primarily at base-load to be cycled off during off-peak hours. For many plants, the increased cycling has contributed to shorter maintenance intervals and higher overall operating costs. Technology advancements in combustion system design and in gas turbine control systems has led to extensions in the emissions-compliant operating window of gas turbines, also known as turndown. With extended turndown capability, customers are now able to significantly reduce fuel consumption during minimum load operation at off-peak hours, while simultaneously minimizing the number of shutdowns. Extended turndown reduces operational costs by offsetting the fuel consumption costs against the costs associated with starting up and the maintenance costs associated with such starts. Along with the increased emphasis on turndown capability, there has been a rising need to develop and standardize methods by which turndown capability can be accurately measured and reported. By definition, the limiting factor for turndown is the exhaust gas emissions, primarily CO and NOx. A concurrent and accurate measurement of performance and emissions is an essential ingredient to the determination of turndown capability. Of particular challenge is the method by which turndown results that were measured at one set of ambient conditions can be accurately projected to a specific guarantee condition, or to a range of ambient conditions, for which turndown capabilities have been guaranteed. The turndown projection methodology needs to consider combustion physics, control system algorithms, and basic cycle thermodynamics. Recent advances in the integration of empirically tuned physics-based combustion models with control system models and the gas turbine thermodynamic simulation, has resulted in test procedures for use in the contractual demonstration of turndown capability. A discussion of these methods is presented, along with data showing the extent to which the methods have provided accurate and repeatable test results.


Author(s):  
Jan Zanger ◽  
Thomas Monz ◽  
Manfred Aigner

To establish micro gas turbine (MGT) systems in a wide field of CHP applications, innovative combustion concepts are needed to meet the demands for low exhaust gas emissions, high efficiency and reliability as well as high fuel flexibility. A promising technology for future MGT combustion is the FLOX® concept. The goal of the presented work is to prove the feasibility of a double–staged, FLOX®–based MGT combustion system on a MGT test rig. The paper reports a reliable operating behavior of a Turbec T100 MGT in combination with the new FLOX®–based combustion chamber utilizing natural gas. The measured exhaust gas emissions are compared for different configurations of the combustion chamber and the standard Turbec system. It is shown that the carbon monoxide emissions are reduced whereas the nitrogen oxide emissions exceed the emission levels of the standard MGT burner. However, they still fall far below the German legal limits. For helping to interpret the results of the MGT combustion system, the double–staged combustor is compared to a single–staged FLOX®burner on basis of atmospheric measurements. Here, it is shown that the margin to lean blow–off is substantially increased by the fuel staging. Moreover, it is demonstrated that the exhaust gas emissions of the double–staged combustor could be kept at a similar very low level by applying the staging. Additionally, the overall reaction regions are reported by OH* chemiluminescence imaging as a function of burner air number. Based on this atmospheric study the transfer to MGT conditions is made and appropriate measures are derived to optimize the exhaust gas emissions of the MGT FLOX® combustion system.


Author(s):  
Wu Shou Sheng ◽  
R. C. Adkins ◽  
R. S. Fletcher

A detailed experimental study has been made on the aerodynamic characteristics of a combustor with variable air admission. Data from the study was used to design a prototype combustor which will be used to demonstrate the reduction of exhaust gas emissions. Unlike the more usual variable geometry combustors, the division of air into the particular zones of this novel type of combustor can be achieved without the complexities of mechanical adjustment.


Author(s):  
T. O. Monz ◽  
M. Stöhr ◽  
W. O’Loughlin ◽  
J. Zanger ◽  
M. Hohloch ◽  
...  

A swirl stabilized MGT combustor (Turbec T100) was operated with natural gas and was experimentally characterized in two test rigs, a pressurized and optically accessible MGT test rig and an atmospheric combustor test rig. For the detailed characterization of the combustion processes, planar OH-PLIF and simultaneous 3D-stereo PIV measurements were performed in the atmospheric combustor test rig. Flow fields, reaction zones and exhaust gas emissions are reported for a range of pressure scaled MGT load points. Parameter studies on combustor inlet conditions (e.g. air preheating temperature, air and fuel mass flow rates and fuel split) were conducted in the atmospheric combustor test rig. From the parameters studies the fuel split between the pilot and the main stage and the air preheating temperature were found to have the biggest impact on the flame shape, flame stabilization and exhaust gas emissions. The measurements of the ATM test rig are compared with measurements of the pressurized MGT test rig with and without an optically accessible combustion chamber. Opened and closed conical flame and flow pattern were found in both test rigs. Reasons for the two flame and flow pattern are supposed to be the interaction of pilot stage combustion and flow field and the interaction of the dilution air with the combustion and the flow field. The results are discussed and compared with repect to a transferability of combustion characteristics from the ATM test rig to the MGT test rigs.


Sign in / Sign up

Export Citation Format

Share Document