scholarly journals Time Resolved Measurements in a Low Aspect Ratio Transonic Compressor Stage

Author(s):  
A. H. Epstein ◽  
W. T. Thompkins ◽  
J. L. Kerrebrock ◽  
W. F. Ng

The time resolved flowfield in a low aspect ratio transonic compressor stage has been studied using a high frequency response sphere probe with a bandpass of D.C. to 20 kHz in a blowdown compressor facility. Averaged over the compressor annulus, the data agree well with those measured with standard pilot type probes on the same stage in a conventional test rig. Not all the spanwise distributions agree, however. These differences are explained as errors in the pilot probe readings due to fluctuations in the flow. The experimental data are compared to the results of a three-dimensional inviscid Euler calculation.

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
G. Persico ◽  
A. Mora ◽  
P. Gaetani ◽  
M. Savini

In this paper the three-dimensional unsteady aerodynamics of a low aspect ratio, high pressure turbine stage are studied. In particular, the results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX, are critically evaluated against experimental data. Measurements were carried out with a novel three-dimensional fast-response pressure probe in the closed-loop test rig of the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano. An analysis is first reported about the strategy to limit the CPU and memory requirements while performing three-dimensional simulations of blade row interaction when the rotor and stator blade numbers are prime to each other. What emerges as the best choice is to simulate the unsteady behavior of the rotor alone by applying the stator outlet flow field as a rotating inlet boundary condition (scaled on the rotor blade pitch). Thanks to the reliability of the numerical model, a detailed analysis of the physical mechanisms acting inside the rotor channel is performed. Two operating conditions at different vane incidence are considered, in a configuration where the effects of the vortex-blade interaction are highlighted. Different vane incidence angles lead to different size, position, and strength of secondary vortices coming out from the stator, thus promoting different interaction processes in the subsequent rotor channel. However some general trends can be recognized in the vortex-blade interaction: the sense of rotation and the spanwise position of the incoming vortices play a crucial role on the dynamics of the rotor vortices, determining both the time-mean and the time-resolved characteristics of the secondary field at the exit of the stage.


1992 ◽  
Author(s):  
A. R. Wadia ◽  
C. H. Law

Transonic compressor rotor performance is sensitive to variations in several known design parameters. One such parameter is the chordwise location of maximum thickness. This article reports on the design and experimental evaluation of two versions of a low aspect ratio transonic rotor that had the location of the tip blade section maximum thickness moved forward in two increments from the nominal 70 percent to 55 and 40 percent chord length, respectively. The original hub characteristics were preserved and the maximum thickness location was adjusted proportionately along the span. Although designed to satisfy identical design speed requirements, the experimental results reveal significant variation in the performance of the rotors. At design speed, the rotor with its maximum thickness located at 55 percent chord length attains the highest peak efficiency amongst the three rotors but has lowest flow rollback relative to the other two versions. To focus on current ruggedization issues for transonic blading (e.g. bird, ice ingestion), detailed comparison of test data and analysis to characterize the aerodynamic flow details responsible for the measured performance differences was confined to the two rotors with the most forward location of maximum thickness. A three-dimensional viscous flow analysis was used to identify the performance enhancing features of the higher efficiency rotor and to provide guidance in the interpretation of the experimental measurements. The computational results of the viscous analysis shows that the difference in performance between the two rotors can be attributed to the higher shock losses that result from the increased leading edge “wedge angle” as the maximum thickness is moved closer to the leading edge. The test data and the three-dimensional viscous analysis also reveal that the higher efficiency rotor achieves the same static pressure rise potential and loading at a higher flow level than its lesser efficient counterpart and this is responsible for its resulting lower flow rollback and apparent loss in stall margin. Comparison of the peak efficiencies attained by the two rotors described in this article with the baseline ruggedized rotor performance presented in part 1 of this paper suggests the existence of an optimum maximum thickness location at 55 to 60 percent chord length for such low aspect ratio transonic rotors.


Author(s):  
P. Russler ◽  
D. Rabe ◽  
B. Cybyk ◽  
C. Hah

Experimental data and computational predictions are used to characterize the tip flow field of a high performance, low aspect ratio, transonic compressor. Flow structures near the first stage blade tip are monitored experimentally using two different data acquisition schemes. High frequency pressure and laser fringe anemometry data are used to experimentally define the tip flow structure. The high frequency pressure data were acquired with an array of pressure transducers mounted in the rotor casing. Laser data were acquired through a window in the same position. The transducer and laser data adequately define the shock structure at the tip. Both the movement of the shock wave in the blade passage during changes in compressor loading and the interaction between the shock wave and the tip leakage vortex are detected. Similar flow structures and compressor loading effects are numerically predicted using a three-dimensional Navier-Stokes algorithm. A fundamental understanding of the flow field at the blade tip is obtained using these three complementary methods.


Author(s):  
Nelson L. Sanger

A transonic compressor stage has been designed for the Naval Postgraduate School Turbopropulsion Laboratory. The design relied heavily on CFD techniques while minimizing conventional empirical design methods. The low aspect ratio (1.2) rotor has been designed for a specific head ratio of .25 and a tip relative inlet Mach number of 1.3. Overall stage pressure ratio is 1.56. The rotor was designed using an Euler code augmented by a distributed body force model to account for viscous effects. This provided a relatively quick-running design tool, and was used for both rotor and stator calculations. The initial stator sections were sized using a compressible, cascade panel code. In addition to being used as a case study for teaching purposes, the compressor stage will be used as a research stage. Detailed measurements, including non-intrusive LDV, will be compared with the design computations, and with the results of other CFD codes, as a means of assessing and improving the computational codes as design tools.


1993 ◽  
Vol 115 (2) ◽  
pp. 226-239 ◽  
Author(s):  
A. R. Wadia ◽  
C. H. Law

Transonic compressor rotor performance is sensitive to variations in several known design parameters. One such parameter is the chordwise location of maximum thickness. This article reports on the design and experimental evaluation of two versions of a low aspect ratio transonic rotor that had the location of the tip blade section maximum thickness moved forward in two increments from the nominal 70 percent to 55 and 40 percent chord length, respectively. The original hub characteristics were preserved and the maximum thickness location was adjusted proportionately along the span. Although designed to satisfy identical design speed requirements, the experimental results reveal significant variation in the performance of the rotors. At design speed, the rotor with its maximum thickness located at 55 percent chord length attains the highest peak efficiency among the three rotors but has lowest flow rollback relative to the other two versions. To focus on current ruggedization issues for transonic blading (e.g., bird and ice ingestion), detailed comparison of test data and analysis to characterize the aerodynamic flow details responsible for the measured performance differences were confined to the two rotors with the most forward location of maximum thickness. A three-dimensional viscous flow analysis was used to identify the performance-enhancing features of the higher efficiency rotor and to provide guidance in the interpretation of the experimental measurements. The computational results of the viscous analysis show that the difference in performance between the two rotors can be attributed to the higher shock losses that result from the increased leading edge “wedge angle” as the maximum thickness is moved closer to the leading edge. The test data and the three-dimensional viscous analysis also reveal that the higher efficiency rotor achieves the same static pressure rise potential and loading at a higher flow level than its less efficient counterpart and this is responsible for its resulting lower flow rollback and apparent loss in stall margin. Comparison of the peak efficiencies attained by the two rotors described in this article with the baseline ruggedized rotor performance presented in part 1 of this paper suggests the existence of an optimum maximum thickness location at 55 to 60 percent chord length for such low aspect ratio transonic rotors.


1996 ◽  
Vol 118 (3) ◽  
pp. 479-491 ◽  
Author(s):  
N. L. Sanger

A transonic compressor stage has been designed for the Naval Postgraduate School Turbopropulsion Laboratory. The design relied heavily on CFD techniques while minimizing conventional empirical design methods. The low aspect ratio (1.2) rotor has been designed for a specific head ratio of 0.25 and a tip relative inlet Mach number of 1.3. Overall stage pressure ratio is 1.56. The rotor was designed using an Euler code augmented by a distributed body force model to account for viscous effects. This provided a relatively quick-running design tool, and was used for both rotor and stator calculations. The initial stator sections were sized using a compressible, cascade panel code. In addition to being used as a case study for teaching purposes, the compressor stage will be used as a research stage. Detailed measurements, including nonintrusive LDV, will be compared with the design computations, and with the results of other CFD codes, as a means of assessing and improving the computational codes as design tools.


1991 ◽  
Vol 35 (04) ◽  
pp. 314-324
Author(s):  
Todd McComb

Using low-aspect-ratio flat ship theory, this paper defines a procedure to determine the position of a hull which is in equilibrium at some "fast" speed in terms of a given hull shape for the same hull at rest. This procedure is then used to find the equilibrium flow past a moving ship, when given the shape of the hull at rest. The method is then extended to find the hull configuration at various speeds based on either the configuration in the static case or at some other equilibrium speed, leading to a calculation of drag versus speed. Some general formulas and some simple examples are given.


2004 ◽  
Vol 128 (3) ◽  
pp. 492-499 ◽  
Author(s):  
Graham Pullan ◽  
John Denton ◽  
Eric Curtis

Experimental data and numerical simulations are presented from a research turbine with low aspect ratio nozzle guide vanes (NGVs). The combined effects of mechanical and aerodynamic constraints on the NGV create very strong secondary flows. This paper describes three designs of NGV that have been tested in the turbine, using the same rotor row in each case. NGV 2 used three-dimensional design techniques in an attempt to improve the performance of the datum NGV 1 blade, but succeeded only in creating an intense vortex shed from the trailing edge (as previously reported) and lowering the measured stage efficiency by 1.1% points. NGV 3 was produced to avoid the “shed vortex” while adopting a highly aft-loaded surface pressure distribution to reduce the influence of the secondary flows. The stage with NGV 3 had an efficiency 0.5% points greater than that with NGV 1. Detailed comparisons between experiment and computations, including predicted entropy generation rates, are used to highlight the areas where the loss reduction has occurred and hence to quantify the effects of employing highly aft-loaded NGVs.


Sign in / Sign up

Export Citation Format

Share Document