LM2500 Reliability Improvements for United States Navy Applications

Author(s):  
Matthew Driscoll ◽  
Thomas Habib ◽  
William Arseneau

The United States Navy uses the General Electric LM2500 gas turbine engine for main propulsion on its newest surface combatants including the OLIVER HAZARD PERRY (FFG 7) class frigates, SPRUANCE (DD 963) class destroyers, TICONDEROGA (CG 47) class cruisers, ARLIEGH BURKE (DDG 51) class destroyers and SUPPLY (AOE 6) class oilers. Currently, the Navy operates a fleet of over 400 LM2500 gas turbine engines. This paper discusses the ongoing efforts to characterize the availability of the engines aboard ship and pinpoint systems/components that have significant impact on engine reliability. In addition, the program plan to upgrade the LM2500’s standard configuration to improve reliability is delineated.

2021 ◽  
Author(s):  
Jeffrey S. Patterson ◽  
Kevin Fauvell ◽  
Dennis Russom ◽  
Willie A. Durosseau ◽  
Phyllis Petronello ◽  
...  

Abstract The United States Navy (USN) 501-K Series Radiological Controls (RADCON) Program was launched in late 2011, in response to the extensive damage caused by participation in Operation Tomodachi. The purpose of this operation was to provide humanitarian relief aid to Japan following a 9.0 magnitude earthquake that struck 231 miles northeast of Tokyo, on the afternoon of March 11, 2011. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost in excess of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine powered U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and needed to be decontaminated, cleaned, repaired and returned to the Fleet. During the past eight years, the USN has been very proactive and vigilant with their RADCON efforts, and as of the end of calendar year 2019, have successfully completed the 501-K Series portion of the RADCON program. This paper will update an earlier ASME paper that was written on this subject (GT2015-42057) and will summarize the U.S. Navy’s 501-K Series RADCON effort. Included in this discussion will be a summary of the background of Operation Tomodachi, including a discussion of the affected hulls and related gas turbine equipment. In addition, a discussion of the radiological contamination caused by the disaster will be covered and the resultant effect to and the response by the Marine Gas Turbine Program. Furthermore, the authors will discuss what the USN did to remediate the RADCON situation, what means were employed to select a vendor and to set up a RADCON cleaning facility in the United States. And finally, the authors will discuss the dispensation of the 501-K Series RADCON assets that were not returned to service, which include the 501-K17 gas turbine engine, as well as the 250-KS4 gas turbine engine starter. The paper will conclude with a discussion of the results and lessons learned of the program and discuss how the USN was able to process all of their 501-K34 RADCON affected gas turbine engines and return them back to the Fleet in a timely manner.


Author(s):  
Jeffrey S. Patterson ◽  
Kevin D. Fauvell ◽  
Jay McMahon ◽  
Javier O. Moralez

On the afternoon of March 11, 2011 at 2:46pm, a 9.0 magnitude earthquake took place 231 miles northeast of Tokyo, Japan, at a depth of 15.2 miles. The earthquake caused a tsunami with 30 foot waves that damaged several nuclear reactors in the area. It was the fourth largest earthquake on record (since 1900) and the largest to hit Japan. On March 12, 2011, the United States Government launched Operation Tomodachi to provide humanitarian relief aid to Japan. In all, a total of 24,000 troops, 189 aircraft, 24 naval ships, supported this relief effort, at a cost of $90.0 million. The U.S. Navy provided material support, personnel movement, search and rescue missions and damage surveys. During the operation, 11 gas turbine U.S. warships operated within the radioactive plume. As a result, numerous gas turbine engines ingested radiological contaminants and are now operating under Radiological Controls (RADCON). This paper will describe the events that lead to Operation Tomodachi, as well as the resultant efforts on the U.S. Navy’s Japanese based gas turbine fleet. In addition, this paper will outline the U.S. Navy’s effort to decontaminate, overhaul and return these RADCON assets back into the fleet.


Author(s):  
Matthew J. Driscoll ◽  
Thomas Habib

Since the early 1970’s, the United States Navy has utilized the General Electric LM2500 gas turbine engine for propulsion aboard its surface combatants including its newest DDG 51 Class Destroyer. These ships have generally operated at a part power operational profile under a COGAG arrangement which has offered system redundancy while exceeding life projections for the gas turbine engines. For its newest ships still in the design phase (LHD 8/LCS/LSC(X)) the Navy intends to continue to utilize gas turbine engines but in different applications including electric drive, high power boost applications in tandem with both diesel engines and electric motor arrangements. Although this paper focuses on the LM2500, its conclusions are meant to apply to a broader scope of future propulsion applications. Specific conclusions are provided describing potential operating profile considerations.


Author(s):  
H. A. Johnson ◽  
G. K. Bhat

At the present time, virtually all superalloys used in Soviet gas turbine engines have been electroslag remelted. The use of this process in the United States has been at a virtual standstill since its inception by Hopkins in 1935. This paper will cover recent development effort on the process and what it offers to the industry. The process itself will be described in detail. Included also will be its advantages, both in metalworking and resultant mechanical properties obtained on actual gas turbine engine components fabricated from electroslag remelted superalloys.


Author(s):  
Sidney G. Liddle

A study was made of 526 advanced coal-fired locomotive concepts of which 182 used gas turbine engines. This paper summarizes the results of the gas turbine portion of the study. Fifteen forms of coal including coal derived liquids, 15 different combustors, and five types of gas turbine engines were investigated. The principal means of comparing the different engines is by their life-cycle costs. The reason for this approach is that the greatest attraction of coal-fired locomotives is their low operating costs relative to that of Diesel-electric locomotives now in use. Many of the coal-fired locomotives have half the life-cycle costs of comparable Diesel-electrics. Although the analysis was made for conditions in the United States, the results are applicable to other countries.


1976 ◽  
Author(s):  
M. Gell ◽  
K. M. Thomas

Directionally solidified eutectic airfoils for advanced gas turbine engine applications are undergoing intensive development in a number of laboratories in the United States and Europe. These materials offer the potential of a 40 percent or greater increase in creep strength for high work engines or a 50 K or more increase in blade metal temperature for growth versions of current engines. The development status of these alloys will be described with emphasis on casting techniques, mechanical properties, and coatings for the gamma/gamma prime + delta (γ / γ′ + δ) D.S. eutectic. The implications of the elastic anisotropy and low off-axis properties of the D.S. eutectics to turbine blade design and analysis will be discussed.


Author(s):  
Daniel E. Caguiat ◽  
David M. Zipkin ◽  
Jeffrey S. Patterson

Naval Surface Warfare Center Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 conducted a land-based evaluation of fouling-resistant compressor coatings for the 501-K17 Ship Service Gas Turbine Generator (SSGTG) [1]. The purpose of this evaluation was to determine whether such coatings could be used to decrease the rate of compressor fouling and associated fuel consumption. Based upon favorable results from the land-based evaluation, a similar coated compressor gas turbine engine was installed onboard a United States Navy vessel. Two data acquisition computer (DAC) systems and additional sensors necessary to monitor and compare both the coated test engine and an uncoated control engine were added. The goal of this shipboard evaluation was to verify land-based results in a shipboard environment. Upon completion of the DAC installation, the two gas turbine engines were operated and initial data was stored. Shipboard data was compared to land-based data to verify validity and initial compressor performance. The shipboard evaluation is scheduled for completion in June 2003, at which time data will be analyzed and results published.


Author(s):  
O. B. Silchenko ◽  
M. V. Siluyanova ◽  
V. Е. Nizovtsev ◽  
D. A. Klimov ◽  
A. A. Kornilov

The paper gives a brief review of properties and applications of developed extra-hard nanostructured composite materials and coatings based on them. The presentresearch suggestsaerospace applications of nanostructured composite materials based on carbides, carbonitrides and diboridesof transition and refractory metals. To improve the technical and economic performance of gas turbine engines, it is advisable to use new composite structural materials whose basic physicomechanical properties are several times superior to traditional ones. The greatest progress in developing new composites should be expected in the area of materials created on the basis of polymer, metal, intermetallic and ceramic matrices. Currently components and assemblies of gas turbine engines and multiple lighting power units with long operation life and durability will vigorously develop. Next-generation composites are studied in all developed countries, primarily in the United States and Japan.


Author(s):  
P. A. Phillips ◽  
Peter Spear

After briefly summarizing worldwide automotive gas turbine activity, the paper analyses the power plant requirements of a wide range of vehicle applications in order to formulate the design criteria for acceptable vehicle gas turbines. Ample data are available on the thermodynamic merits of various gas turbine cycles; however, the low cost of its piston engine competitor tends to eliminate all but the simplest cycles from vehicle gas turbine considerations. In order to improve the part load fuel economy, some complexity is inevitable, but this is limited to the addition of a glass ceramic regenerator in the 150 b.h.p. engine which is described in some detail. The alternative further complications necessary to achieve satisfactory vehicle response at various power/weight ratios are examined. Further improvement in engine performance will come by increasing the maximum cycle temperature. This can be achieved at lower cost by the extension of the use of ceramics. The paper is intended to stimulate the design application of the gas turbine engine.


NDT World ◽  
2021 ◽  
pp. 58-61
Author(s):  
Aleksey Popov ◽  
Aleksandr Romanov

A large number of aviation events are associated with the surge of gas turbine engines. The article analyzes the existing systems for diagnostics of the surge of gas turbine engines. An analysis of the acoustic signal of a properly operating gas turbine engine was carried out, at which a close theoretical distribution of random values was determined, which corresponds to the studied distribution of the amplitudes of the acoustic signal. An invariant has been developed that makes it possible to evaluate the development of rotating stall when analyzing the acoustic signal of gas turbine engines. A method is proposed for diagnosing the pre-surge state of gas turbine engines, which is based on processing an acoustic signal using invariant dependencies for random processes. A hardware-software complex has been developed using the developed acoustic method for diagnosing the pre-surge state of gas turbine engines.


Sign in / Sign up

Export Citation Format

Share Document