An Experimental Investigation on the Mechanism of Stall Margin Improvement of Casing Treatment

Author(s):  
Zhuang Ping ◽  
Lu Ya-Jun ◽  
Li Bao-Ju ◽  
Feng Yu-Chen

A single-rotor axial flow compressor and a two-dimensional cascade have been tested with and without casing treatment. A three-dimensional flow mechanism of the onset of rotating stall is suggested. It gives good reason to explain the mechanism of stall-margin improvement of casing treatment.

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 151-152
Author(s):  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Sho BONKOHARA ◽  
Yasuhiro SHIBAMOTO ◽  
Masato FURUKAWA

Author(s):  
HaoGuang Zhang ◽  
XuDong Zhang ◽  
YanHui Wu ◽  
WuLi Chu ◽  
HaiYang Kuang

The objective of this study is to evaluate the effect of cross-blade slot casing treatment on the stability and performance of an axial flow compressor rotor. The experimental and unsteady calculated results both show that cross-blade slot casing treatment can generate about 22% stall margin improvement, and the compressor peak efficiency is reduced by about 13%. The detailed flow-field analyses indicate that the sucked and injected flow caused by the slots of cross-blade slot casing treatment can restrain the rotor tip passage blockage, which is made by the low energy tip clearance leakage vortex. When cross-blade slot casing treatment is applied, not only the rotor wheel flange work becomes lower in most of the rotor blade span, but also the flow loss in the blade tip passage becomes fairly large due to the strong interaction between the mainstream and the injected flows made by the slots. As a result, the compressor total pressure ratio and efficiency for cross-blade slot casing treatment are reduced obviously. Three kinds of new cross-blade slot casing treatment were designed according to the previous successful experience and investigated in this paper. The numerical results show that the new three cross-blade slot casing treatments both generate about 54% stall margin improvement at the cost of minor peak efficiency. For one new cross-blade slot casing treatment (CSCT2), the compressor peak efficiency is reduced by about 0.3%. The low energy TLV, which is present for cross-blade slot casing treatment, is removed by the strong sucked flow made by CSCT2. Moreover, the interaction between the mainstream and the injected flows caused by CSCT2 becomes weak obviously, and the corresponding flow loss is reduced greatly. Hence, the compressor stability and performance with CSCT2 are higher than those with cross-blade slot casing treatment.


2006 ◽  
Vol 2006 (0) ◽  
pp. _G607-1_-_G607-4_
Author(s):  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Sho BONKOHARA ◽  
Yasuhiro SHIBAMOTO ◽  
Kazutoyo YAMADA ◽  
...  

Author(s):  
M. Akhlaghi ◽  
R. L. Elder ◽  
K. W. Ramsden

The objective of the current study was to investigate the effect of casing treatment on a multistage axial flow compressor. The main purpose of the investigation was to extend the range and operability of multistage axial compressors. The study seeks to establish whether a vane-recessed tubular-passage casing-treatment could provide beneficial stall margin improvement, without sacrificing the efficiencies of the compressor with the restricted space available for the treatment. A casing treatment that consisted of three parts: an outer casing ring, with a tubular shaped passage on the inside, a set of 120 evenly spaced curved vanes, and then a shroud or inner ring was developed from two initial designs. The casing treatment, manufactured from high quality acrylic, was positioned upstream and partly covering the tip of the first stage rotor blades. The casing treatment was tested on the first stage of a three-stage low-speed compressor with inlet guide vanes with the rear two stages removed. The rotor blade tip axial chord exposure had a significant impact on the effectiveness of the casing treatment. Seven compressor configuration incorporating casing treatments of 23.2%, 33.3%, 43.4%, 53.5%, 63.6%, 73.7% and 83.8% rotor exposure were tested. The results showed significant improvements in stall margin in all exposures and insignificant efficiency sacrifices in some exposures. Nearly 29% of stall margin improvement in terms of the corrected mass flow rate was achieved with 33.3% rotor blade tip axial chord exposure. The compressor build with 53.5% rotor exposure was the best configuration in terms of maximum efficiency gain. In terms of peak pressure rise coefficients the compressor configuration with a casing treatment of 63.6% exposure was the best design. The results also suggest that the vane-recessed tubular-passage casing treatment designed as part of this research, in most instances enabled the stall conditions in the compressor to become progressive rather than abrupt.


Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Marco Porro ◽  
Richard Jefferson-Loveday ◽  
Ernesto Benini

This work focuses its attention on possibilities to enhance the stability of an axial compressor using a casing treatment technique. Circumferential grooves machined into the case are considered and their performances evaluated using three-dimensional steady state computational simulations. The effects of rectangular and new T-shape grooves on NASA Rotor 37 performances are investigated, resolving in detail the flow field near the blade tip in order to understand the stall inception delay mechanism produced by the casing treatment. First, a validation of the computational model was carried out analysing a smooth wall case without grooves. The comparisons of the total pressure ratio, total temperature ratio and adiabatic efficiency profiles with experimental data highlighted the accuracy and validity of the model. Then, the results for a rectangular groove chosen as the baseline case demonstrated that the groove interacts with the tip leakage flow, weakening the vortex breakdown and reducing the separation at the blade suction side. These effects delay stall inception, improving compressor stability. New T-shape grooves were designed keeping the volume as a constant parameter and their performances were evaluated in terms of stall margin improvement and efficiency variation. All the configurations showed a common efficiency loss near the peak condition and some of them revealed a stall margin improvement with respect to the baseline. Due to their reduced depth, these new configurations are interesting because they enable the use of a thinner light-weight compressor case as is desirable in aerospace applications.


Author(s):  
M. Ziabasharhagh ◽  
A. B. McKenzie ◽  
R. L. Elder

An experimental investigation has been carried out on the influence of a vaned recessed casing treatment on the stall margin improvement of axial flow fans with different hub to tip ratio, with and without inlet distortion. The inlet distortion tests were conducted on a 0.5 hub to tip ratio fan and significant increases in the flow range with only small drops in operating efficiency were observed. The clean flow tests were conducted on higher hub to tip ratio fans (0.7 and 0.9). In each case the stage characteristic was compared with the results obtained with a solid casing. Significant increases in the flow range, with only modest or no loss in operating efficiency, were observed for optimum configurations at both diameter ratios.


Author(s):  
Ren-Jing Cao ◽  
Sheng Zhou

Rotating stall phenomenon is usually characterized by 3D aerodynamic stability behavior. The earlier models mainly considered the flow effects in terms of 1D and 2D spatial variables. In order to involve the characteristics of the 3D flow of the compressor, it is necessary to improve the existing rotating stall stability models and further develop the models to consider the effects of the 3D disturbance. In this paper, a new aerodynamic stability model concerning the effects of a radial disturbance produced by the compressor, and explaining more mechanisms about the aerodynamic stability of compressor is presented. Using the developed rotating stall stability model, the stall margins are calculated and compared to experimental data for two axial flow compressors. The calculated results show that the developed 3D rotating stall stability model gives better stall margin prediction than that by the 2D model.


Author(s):  
Xingen Lu ◽  
Junqiang Zhu ◽  
Chaoqun Nie ◽  
Weiguang Huang

The phenomenon of flow instability in the compression system such as fan and compressor has been a long-standing “bottle-neck” problem for gas turbines/aircraft engines. With a vision of providing a state-of-the-art understanding of the flow field in axial-flow compressor in the perspective of enhancing their stability using passive means. Two topics are covered in this paper. The first topic is the stability-limiting flow mechanism close to stall, which is the basic knowledge needed to manipulate end-wall flow behavior for the stability improvement. The physical process occurring when approaching stall and the role of complex tip flow mechanism on flow instability in current high subsonic axial compressor rotor has been assessed using single blade passage computations. The second topic is flow instability manipulation with casing treatment. In order to advance the understanding of the fundamental mechanisms of casing treatment and determine the change in the flow field by which casing treatment improve compressor stability, systematic studies of the coupled flow through a subsonic compressor rotor and various end-wall treatments were carried out using a state-of-the-art multi-block flow solver. The numerically obtained flow fields were interrogated to identify complicated flow phenomenon around and within the end-wall treatments and describe the interaction between the rotor tip flow and end-wall treatments. Detailed analyses of the flow visualization at the rotor tip have exposed the different tip flow topologies between the cases with treatment casing and with untreated smooth wall. It was found that the primary stall margin enhancement afforded by end-wall treatments is a result of the tip flow manipulation. Compared to the smooth wall case, the treated casing significantly dampen or absorb the blockage near the upstream part of the blade passage caused by the upstream movement of tip clearance flow and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of flow instability.


Author(s):  
Anand P. Darji ◽  
Dilipkumar Bhanudasji Alone ◽  
Chetan S. Mistry

A transonic axial flow compressor undergoes severe vibrations due to instabilities like stall and surge when it operates at lower mass flow rate in the absence of any control devices. In present study, the attempt was made to understand the combine impact of circumferential casing grooves (CCG) of constant aspect ratio and different axial spacing between rotor and stator on the operating stability of single stage transonic axial compressor and that of rotor alone using numerical simulation. The optimum rotor-stator gap in the presence of grooved casing treatment was identified. The steady state numerical analysis was performed by using three-dimensional Reynolds Average Navier-Stokes equation adapting shear stress transport (SST) k-ω turbulence model. The study is reported in two sections. First section includes the detailed numerical study on baseline case having smooth casing wall (SCW). The computational results were validated with the experimental results available at Propulsion Division of CSIR-NAL, Bangalore. The computational study shows good agreement with experimental results. The second section comprises the effects of optimum designs of CCG and various axial spacing on the stall margin improvement of transonic compressor. Current computational study shows that the axial spacing between rotor and stator is an important parameter for improvement in stall margin not only for SCW but also for CCG. Therefore, the highest stall margin improvement of 9% has achieved for 75% axial spacing.


Sign in / Sign up

Export Citation Format

Share Document