scholarly journals Recess Vane Passive Stall Control

Author(s):  
M. Ziabasharhagh ◽  
A. B. McKenzie ◽  
R. L. Elder

An experimental investigation has been carried out on the influence of a vaned recessed casing treatment on the stall margin improvement of axial flow fans with different hub to tip ratio, with and without inlet distortion. The inlet distortion tests were conducted on a 0.5 hub to tip ratio fan and significant increases in the flow range with only small drops in operating efficiency were observed. The clean flow tests were conducted on higher hub to tip ratio fans (0.7 and 0.9). In each case the stage characteristic was compared with the results obtained with a solid casing. Significant increases in the flow range, with only modest or no loss in operating efficiency, were observed for optimum configurations at both diameter ratios.

Author(s):  
C. S. Kang ◽  
A. B. McKenzie ◽  
R. L. Elder

An experimental investigation to examine the influence of the vaned recess casing treatment on stall margin, operating efficiency and the flow field of a low speed axial flow fan with aerospace type blade loading is presented. Different geometrical designs of the vaned passages were examined. The best configuration resulted in a stall margin improvement of 67%, a significantly higher pressure rise in the stall region and insignificant change in peak efficiency. Detailed 3-D flow measurements in the endwall region and in the casing recess were carried out with a slanted hot-wire, providing some insight to the operation of the device. The results revealed that the stall margin improvement was largely due to the removal of flow from the blade tip to the recess, and the elimination of the growth of the stall region at the tip, which occurs at stall in the solid casing build.


Aerospace ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Marco Porro ◽  
Richard Jefferson-Loveday ◽  
Ernesto Benini

This work focuses its attention on possibilities to enhance the stability of an axial compressor using a casing treatment technique. Circumferential grooves machined into the case are considered and their performances evaluated using three-dimensional steady state computational simulations. The effects of rectangular and new T-shape grooves on NASA Rotor 37 performances are investigated, resolving in detail the flow field near the blade tip in order to understand the stall inception delay mechanism produced by the casing treatment. First, a validation of the computational model was carried out analysing a smooth wall case without grooves. The comparisons of the total pressure ratio, total temperature ratio and adiabatic efficiency profiles with experimental data highlighted the accuracy and validity of the model. Then, the results for a rectangular groove chosen as the baseline case demonstrated that the groove interacts with the tip leakage flow, weakening the vortex breakdown and reducing the separation at the blade suction side. These effects delay stall inception, improving compressor stability. New T-shape grooves were designed keeping the volume as a constant parameter and their performances were evaluated in terms of stall margin improvement and efficiency variation. All the configurations showed a common efficiency loss near the peak condition and some of them revealed a stall margin improvement with respect to the baseline. Due to their reduced depth, these new configurations are interesting because they enable the use of a thinner light-weight compressor case as is desirable in aerospace applications.


Author(s):  
HaoGuang Zhang ◽  
XuDong Zhang ◽  
YanHui Wu ◽  
WuLi Chu ◽  
HaiYang Kuang

The objective of this study is to evaluate the effect of cross-blade slot casing treatment on the stability and performance of an axial flow compressor rotor. The experimental and unsteady calculated results both show that cross-blade slot casing treatment can generate about 22% stall margin improvement, and the compressor peak efficiency is reduced by about 13%. The detailed flow-field analyses indicate that the sucked and injected flow caused by the slots of cross-blade slot casing treatment can restrain the rotor tip passage blockage, which is made by the low energy tip clearance leakage vortex. When cross-blade slot casing treatment is applied, not only the rotor wheel flange work becomes lower in most of the rotor blade span, but also the flow loss in the blade tip passage becomes fairly large due to the strong interaction between the mainstream and the injected flows made by the slots. As a result, the compressor total pressure ratio and efficiency for cross-blade slot casing treatment are reduced obviously. Three kinds of new cross-blade slot casing treatment were designed according to the previous successful experience and investigated in this paper. The numerical results show that the new three cross-blade slot casing treatments both generate about 54% stall margin improvement at the cost of minor peak efficiency. For one new cross-blade slot casing treatment (CSCT2), the compressor peak efficiency is reduced by about 0.3%. The low energy TLV, which is present for cross-blade slot casing treatment, is removed by the strong sucked flow made by CSCT2. Moreover, the interaction between the mainstream and the injected flows caused by CSCT2 becomes weak obviously, and the corresponding flow loss is reduced greatly. Hence, the compressor stability and performance with CSCT2 are higher than those with cross-blade slot casing treatment.


Author(s):  
Haoguang Zhang ◽  
Wenhao Liu ◽  
Enhao Wang ◽  
Yanhui Wu ◽  
Weidong Yao

This paper seeks to reveal the mechanisms of enhancing the stability of a subsonic axial flow rotor by applying blade angle slots casing treatment (BSCT). When blade angle slots are applied, there is about 9% stall margin improvement for the experiment and about 8% stall margin improvement for the calculation, but the decrease in the rotor maximum efficiency is about 11% for the experiment and the calculation. The compared results between smooth wall and blade angle slots indicate that the backflow in the rotor top passage is weakened by the injected and sucked flows formed inside the slots of BSCT. Moreover, the injected flows inside the slots interfere with the flows in the rotor passage upstream, and this interference leads to large flow losses. Therefore, the rotor efficiency for blade angle slots is much lower than that for smooth wall. To confirm that the structural optimization of blade angle slots can effectively improve the compressor stability with small efficiency losses, optimized blade angle slots casing treatment (BSCT1) was designed according to the past experience of slot casing treatment. The calculated result shows that the optimized blade angle slots generate about 59% stall margin improvement, and the compressor maximum efficiency with the optimized blade angle slots is about 0.05% more than that for smooth wall. The flow field analyses show that the strong sucked flows formed inside the slots for BSCT1 can prevent the backflow, which exists in the rotor top passage for BSCT, from appearing. In addition, the level of interference of the flows in the rotor passage upstream for BSCT1 is much lower than that for BSCT, and the corresponding losses with BSCT1 become lower. Therefore, the rotor with BSCT1 has a larger stable operating range and better efficiencies than that with BSCT.


Author(s):  
A. Ghila ◽  
A. Tourlidakis

This paper presents a computational investigation of flows in a single axial flow fan with and without casing treatment. It analyses the effect of the recess casing treatment on stall margin improvement as well as its influence on global performance parameters. The paper seeks to offer a contribution to the understanding of the physical processes occurring when approaching stall and the working mechanism by which casing treatments improve stall margin. A Reynolds-Averaged Navier-Stokes CFD code was used for the analysis and the numerical investigation of the overall performance, efficiency and work-input characteristics of the fan were found to agree very well with previously reported experimental results. The effect of casing treatment was investigated using two types of configurations, vaneless and vaned casing. The vaneless casing treatment produced a sizeable stall margin improvement with negligible loss of efficiency. The recess was fitted later with vanes and was shown to offer both a further stall margin improvement and an increase in the pressure rise coefficient without any significant drop in efficiency at design conditions.


1977 ◽  
Vol 99 (1) ◽  
pp. 121-133 ◽  
Author(s):  
H. Takata ◽  
Y. Tsukuda

Experiments on the effect of casing treatment were carried out using low-speed axial-flow compressors. Results on the overall compressor performance and on the flow through the blade row as well as the flow within the treatment slots are presented. Then, based on the experiments, a possible mechanism of the stall margin improvement is suggested.


Author(s):  
Maoyi Li ◽  
Wei Yuan ◽  
Xizhen Song ◽  
Yajun Lu ◽  
Zhiping Li ◽  
...  

The traditional annulus casing treatment often pays the price of lowered efficiency for improving the stall margin of a compressor under inlet distortion. In view of the unsymmetry of the inlet flow-field of compressors, partial casing treatment was used to control the flow in a transonic axial-flow compressor with arc-skewed-slots deployed at different circumferential positions under inlet distortion. The experimental results indicate that when the partial casing treatment is arranged on the undistorted and distorted sectors, the stall margin is enhanced by 8.02%, with the relative peak efficiency improved simultaneously by 2.143%, compared with the case of solid casing at 98% rotating speed. By contrast, the traditional casing treatment increases the stall-margin by 23.13%, but decreases the relative peak efficiency by 0.752%. By analyzing dynamic and static experimental data, the mechanism underlying the partial casing treatment was also studied in detail here. The disturbances of inlet flow were restrained by annulus casing treatment, nevertheless the total pressure ratio was decreased obviously in the distorted sector. As a result, the stall-margin is improved, but the relative peak efficiency is decreased too. When the partial casing treatment was arranged on the undistortded and distorted sectors, the stall disturbances was thereby restrained. So the stall margin was enhanced. In addition, the total pressure ratio was improved by the partial casing treatment in the distorted and transition sectors, and thus the relative peak efficiency was also increased markedly.


Author(s):  
Kiran Yelmar ◽  
K. Viswanath

Stall margin improvement, though finite, has great influence on performance of a compressor and fan. Modification to the geometry of the recess and the recess vane used in the recess vane casing treatment approach would increase the operating range of an axial flow fan by removing the whirl component of circulatory flow near the blade tip. The present paper investigates the combined effect of variation of recess height and amount of blade chord exposure on flow characteristics and stall margin in low speed axial flow fan. Numerical simulations and modeling was performed using CFX 13.0 and ICEMCFD. The simulated pressure rise, work input and efficiency characteristics agreed well with the experimental data of a low sped fan obtained from the literature. The range of the flow rates which correspond to the stall free operating range of the untreated fan is compared with the same for the different modifications carried out to the geometry. The sensitivity of the operating range to the modifications is analyzed and the effect of recess vane geometry parameters on stall margin improvement is evaluated. Simulations suggest that within the ranges of parameters investigated stall margin improvement increases with both blade chord exposure and height.


Author(s):  
Zhuang Ping ◽  
Lu Ya-Jun ◽  
Li Bao-Ju ◽  
Feng Yu-Chen

A single-rotor axial flow compressor and a two-dimensional cascade have been tested with and without casing treatment. A three-dimensional flow mechanism of the onset of rotating stall is suggested. It gives good reason to explain the mechanism of stall-margin improvement of casing treatment.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Xu Dong ◽  
Dakun Sun ◽  
Fanyu Li ◽  
Donghai Jin ◽  
Xingmin Gui ◽  
...  

This paper conducts an experimental research of rotating inlet distortion on a low-speed large size test compressor with emphasis on the stability problem of axial fan/compressors, and the stall margin enhancement with a kind of stall precursor-suppressed (SPS) casing treatment. Some results on compressor stall margin and prestall behavior under the restriction of rotating inlet distortion are presented. The experimental results show that whether the inlet distortion is co-rotating or counter-rotating, the SPS casing treatment can still improve the stall margin without leading to additional efficiency loss caused by such configuration. The experiment results also show that the mechanism of the stall margin improvement with such casing treatment is associated with delaying the nonlinear development of the stall precursor waves and weakening the unsteady flow disturbances in a compression system.


Sign in / Sign up

Export Citation Format

Share Document