Analysis of Impeller Vibration in Radial Compressors

1986 ◽  
Author(s):  
J. Wachter

The prediction of the dynamic behaviour of the impellers is of considerable importance in the design of turbomachines. The excitation possibilities of the radial impellers by the forces or imposed displacements are various and an appreciation of the life of radial impellers is strongly bounded to an accurate dynamic analysis. Therefore, it is necessary to analyze them in order to improve the geometry or modify the design. In order to better understand and explain the dynamic behaviour of impellers, a series of impeller models with various numbers of blades of radial or tangential extention have been examined. Because of complexity of analytical analysis shown in earlier works, the eigenfrequencies and modes of the impellers were evaluated using a Finite Element program. Interferometric holography served as a means to visualize the dynamic behaviour of the impellers. An experimental modal analysis was used to identify the modal parameters. A detailed application of these methods to an actual centrifugal impeller was also reported along with theoretical and experimental investigations on the impeller models.

Author(s):  
Djoni E. Sidarta ◽  
Xiaoning Jing ◽  
Kostas F. Lambrakos ◽  
Roger W. Burke ◽  
William C. Webster

Steel Catenary Risers (SCRs) are commonly used in the offshore industry. Strength and fatigue performance of SCRs due to waves, currents and vessel motions is typically calculated using time domain dynamic analysis. Strength analysis may involve a large number of load cases for different environments, riser conditions and vessel configurations. Fatigue analysis may involve computation of riser response for hundreds of fatigue sea-states. It is very important for project schedule and cost that the analysis software used is both accurate and computer efficient. This paper presents RodDyn as an alternative time domain analysis tool for SCR strength and fatigue analysis. RodDyn is a finite element program for dynamic analysis of single-pipe risers. Several publications on this program are available in the literature. The results of dynamic analysis of an SCR for strength and fatigue from RodDyn are compared against the results from ABAQUS. ABAQUS is a general finite element program that has been widely used in the offshore exploration and production industry and has been considered one of the standard finite element programs. Riser dynamic analysis uses time series of vessel motions due to metocean environments at an oblique angle to the plane of the SCR. Von Mises stress per API RP 2RD, strength checks per API STD 2RD and fatigue damage along the riser are presented for both RodDyn and ABAQUS. Time series of effective tension and bending moments at selected locations on the riser are also compared. The main advantage of using RodDyn for riser analysis is the speed of computation. This paper shows that RodDyn can deliver significant gains in computational speed compared to standard riser analysis software programs without sacrificing accuracy of the computed results.


Author(s):  
Jyoti Agarwal ◽  
Ankush Chaudhary

For dynamic analysis, it is required to provide viscous boundaries in PLAXIS to reduce the boundary effects and to prevent the reflection of waves from boundaries. So, a study has been carried out to compare the various methods of providing silent boundaries and to see the effectiveness of viscous boundaries used in PLAXIS. In this work, three methods of providing silent boundaries, which are viscous boundaries, local damping, and extended boundary, are analyzed using a 2D finite element program in FORTRAN by considering the simple problem of a two-dimensional vertical bar. Parameters, such as, normal stress at the bottom, vertical displacement at the top, potential energy, kinetic energy, strain energy, and total energy of bar are determined with and without using the above three methods of providing silent boundaries. Results are compared using graphs. It was observed that standard viscous boundaries are not much effective for static analysis but most effective for dynamic analysis.


2021 ◽  
Vol 37 ◽  
pp. 205-215
Author(s):  
Heng Chen ◽  
Hongmei Cheng ◽  
Aibin Xu ◽  
Yi Xue ◽  
Weihong Peng

ABSTRACT The fracture field of coal and rock mass is the main channel for gas migration and accumulation. Exploring the evolution law of fracture field of coal and rock mass under the condition of drilling and slitting construction has important theoretical significance for guiding efficient gas drainage. The generation and evolution process of coal and rock fissures is also the development and accumulation process of its damage. Therefore, based on damage mechanics and finite element theory, the mathematical model is established. The damage variable of coal mass is defined by effective strain, the elastoplastic damage constitutive equation is established and the secondary development of finite element program is completed by FORTRAN language. Using this program, the numerical simulation of drilling and slitting construction of the 15-14120 mining face of Pingdingshan No. 8 Mine is carried out, and the effects of different single borehole diameters, different kerf widths and different kerf heights on the distribution area of surrounding coal fracture field and the degree of damage are studied quantitatively. These provide a theoretical basis for the reasonable determination of the slitting and drilling arrangement parameters at the engineering site.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Auchar Zardari ◽  
Hans Mattsson ◽  
Sven Knutsson ◽  
Muhammad Shehzad Khalid ◽  
Maria V. S. Ask ◽  
...  

Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.


1981 ◽  
Vol 17 (12) ◽  
pp. 1779-1789
Author(s):  
E. Haugeneder ◽  
W. Prochazka ◽  
P. Tavolato

Sign in / Sign up

Export Citation Format

Share Document