scholarly journals A Reheat Gas Turbine Oilfield Cogeneration System, Fueled With Heavy Crude Oil, Which Produces Very Low NOx Emissions

Author(s):  
Frederick E. Moreno ◽  
Philip J. Divirgilio

A gas turbine cogeneration system is described that offers fuel flexibility plus substantially reduced NOx emissions without water injection or selective catalytic reduction (SCR). The entirely new turbine design developed by TurboEnergy Systems permits boiler repowering and other cogeneration applications. The first application will be in the California heavy oilfields; the system will be retrofitted to an existing 50 million btu/hr oilfield steam generator used in thermally enhanced oil recovery. The turbine, rated at 1250 kw (site output), was sized to match the combustion air flow requirements of the steam generator. A reheated design was selected to maximize power output from the limited airflow available and to maximize the exhaust temperature for cogeneration and industrial process applications. The oilfield cogeneration system being developed includes a new heavy oil burner for the steam generator which will be fired on the high temperature exhaust from the turbine. The system will also provide low NOx emissions, below the tightest projected standards in Kern County, which has a large concentration of heavy oilfields. Both the turbine and the steam generator burner will burn heavy (API 13 gravity) crude oil. The paper describes the overall system, its interface with the existing process, the design techniques used, and presents performance projections. Field testing will begin at a site near Bakersfield, California, starting in early to mid-1987.

Author(s):  
Kenneth O. Smith ◽  
Leonard C. Angello ◽  
F. Richard Kurzynske

The design and initial rig testing of an ultra-low NOx gas turbine combustor primary zone are described. A lean premixed, swirl-stabilized combustor was evaluated over a range of pressures up to 10.7 × 105 Pa (10.6 atm) using natural gas. The program goal of reducing NOx emissions to 10 ppm (at 15% O2) with coincident low CO emissions was achieved at all combustor pressure levels. Appropriate combustor loading for ultra-low NOx operation was determined through emissions sampling within the primary zone. The work described represents a first step in developing an advanced gas turbine combustion system that can yield ultra-low NOx levels without the need for water injection and selective catalytic reduction.


Author(s):  
Nicolas Demougeot ◽  
Jeffrey A. Benoit

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-commissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. NRG’s Gilbert power plant based in Milford, NJ began commercial operation in 1974 and is fitted with four (4) natural gas fired GE’s 7B gas turbine generators with two each exhausting to HRSG’s feeding one (1) steam turbine generator. The gas turbine units, originally configured with diffusion flame combustion systems with water injection, were each emitting 35 ppm NOx with the New Jersey High Energy Demand Day (HEED) regulatory mandate to reduce NOx emissions to sub 10 ppm by May 1st, 2015. Studies were conducted by the operator to evaluate the economic viability & installation of environmental controls to reduce NOx emissions. It was determined that installation of post-combustion environmental controls at the facility was both cost prohibitive and technically challenging, and would require a fundamental reconfiguration of the facility. Based on this economic analysis, the ultra-low emission combustion system conversion package was selected as the best cost-benefit solution. This technical paper will focus on the ultra low emissions technology and key features employed to achieve these low emissions, a description of the design challenges and solution to those, a summary of the customer considerations in down selecting options and an overview of the conversion scope. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Author(s):  
William E. Hauhe ◽  
Gary L. Haub ◽  
Charles O. Myers ◽  
Donald C. Guthan ◽  
David O. Fitts

This paper describes user experience with the operation and maintenance of a gas turbine based cogeneration plant operating at base load while injecting up to 80 gpm (303 l/min) of water to control NOx emissions to 42 ppmv (at 15% O2). The plant, located in the Kern River Oil Field, near Bakersfield, California, has produced an average of 294.6 MWe and 1.903 million lbs/hr (0.863 million kg/hr) of steam since achieving commercial operation in August, 1985. To date, the plant has achieved an operational reliability and availability of 98.9% and 95.4%, respectively. The effects of water injection on combustion hardware, as well as, overall gas turbine reliability and availability and equipment enhancements will be discussed.


Author(s):  
James S. Davis ◽  
G. C. Duponteil

Selective Catalytic Reduction (SCR) is a post-combustion method to reduce the oxides of nitrogen (NOx), present in flue gases such as gas turbine exhaust streams, to N2 and water. It involves the injection of ammonia and the use of a catalyst module to promote the reaction to obtain high efficiency (60–86+%) NOx reduction. Several operating parameters can influence catalyst performance to include temperature, gas flow distribution, presence of sulfur compounds and catalyst age. This paper examines the impact of a SCR integration in a gas turbine heat recovery steam generator (HRSG) design/operation. Limitations on HRSG load and following capabilities, effect on capital cost and overall performance and current SCR system experience represent a number of areas that are examined.


Author(s):  
Urmila C. Reddy ◽  
Christine E. Blanchard ◽  
Barry C. Schlein

Pratt & Whitney has developed a novel water-injected Industrial Gas Turbine (IGT) combustor liner design that has demonstrated significant reduction in CO emissions when compared to typical film cooled combustor designs. The CO reduction demonstrated in a prototype test shows that the CO quenching due to cooler film temperatures near the liner wall is a significant source of CO emissions in a conventional water-injected combustor operating on natural gas fuel. This finding paved the way for a combustor design that reduces CO emissions while still maintaining low levels of NOx emissions. This design also has potential for lower NOx since the low CO emissions characteristic enables increased water-injection. This paper presents the emissions characteristics measured on prototype hardware and the design of the engine hardware for future validation. Significant reduction in gaseous emissions was demonstrated with the testing of a prototype at the United Technologies Research Center in East Hartford, CT. This reduction in emissions compared to the baseline film-cooled design for a given operating condition has many benefits to the customer, including reduced need for exhaust catalyst cleanup and extended operating times while still meeting site permits specified in CO tons per year. Other benefits may include the ability to guarantee lower NOx emissions through increased water injection for the current CO emissions output.


Author(s):  
W. S. Y. Hung

An analytical model has been developed to simulate the thermal NOx emission processes in various gas turbine combustors for a variety of fuels. The NOx emissions predicted by the model are in excellent agreement with available laboratory and field data. Its capability to simulate the water injection process accurately has been demonstrated previously. Comprehensive understanding of the NOx emission processes in gas turbine combustors has been gained through the current analytical studies. NOx emissions as influenced by ambient humidity, changes in combustor geometry, type of fuel used and changes in operating parameters can now be evaluated quantitatively through a priori prediction and have been verified by available laboratory and field data. The analytical model has also been demonstrated to be a powerful guidance tool in directing the experimental testing program in an effort to reduce NOx emissions from gas turbine combustors.


2020 ◽  
Vol 10 (2) ◽  
pp. 17-26
Author(s):  
Gustavo Maya Toro ◽  
Luisana Cardona Rojas ◽  
Mayra Fernanda Rueda Pelayo ◽  
Farid B. Cortes Correa

Low salinity water injection has been frequently studied as an enhanced oil recovery process (EOR), mainly due to promising experimental results and because operational needs are not very different from those of the conventional water injection. However, there is no agreement on the mechanisms involved in increasing the displacement of crude oil, except for the effects of wettability changes. Water injection is the oil recovery method mostly used, and considering the characteristics of Colombian oil fields, this study analyses the effect of modifying the ionic composition of the waters involved in the process, starting from the concept of ionic strength (IS) in sandstone type rocks. The experimental plan for this research includes the evaluation of spontaneous imbibition (SI), contact angles, and displacement efficiencies in Berea core plugs. Interfacial tension and pH measurements were also carried out. The initial scenario consists in formation water (FW), with a total concentration of 9,800 ppm (TDS) (IS ~ 0.17) and a 27 °API crude oil. Magnesium and Calcium brine were also used in a first approach to assess the effect of the divalent ions. Displacement efficiency tests are performed using IS of 0.17, 0.08, and 0.05, as secondary and tertiary oil recovery and the recovery of oil increases in both scenarios. Spontaneous imbibition curves and contact angle measurements show variations as a function of the ionic strength, validating the displacement efficiencies. Interfacial tension and pH collected data evidence that fluid/fluid interactions occur due to ionic strength modifications. However, as per the conditions of this research, fluid/fluid mechanisms are not as determining as fluid/rock.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Aifen Li ◽  
Xiaoxia Ren ◽  
Shuaishi Fu ◽  
Jiao Lv ◽  
Xuguang Li ◽  
...  

The application of water flooding is not successful for the development of low permeability reservoirs due to the fine pore sizes and the difficulty of water injection operation. CO2 can dissolve readily in crude oil and highly improve the mobility of crude oil, which makes CO2 flooding an effective way to the development of the ultralow-permeability reservoirs. The regularities of various CO2 displacement methods were studied via experiments implemented on cores from Chang 8 Formation of Honghe Oilfield. The results show that CO2 miscible displacement has the minimum displacement differential pressure and the maximum oil recovery; CO2-alternating-water miscible flooding has lower oil recovery, higher drive pressure, and relatively lower gas-oil ratio; water flooding has the minimum oil recovery and the maximum driving pressure. A large amount of oil still can be produced under a high gas-oil ratio condition through CO2 displacement method. This fact proves that the increase of gas-oil ratio is caused by the production of dissolved CO2 in oil rather than the free gas breakthrough. At the initial stage of CO2 injection, CO2 does not improve the oil recovery immediately. As the injection continues, the oil recovery can be improved rapidly. This phenomenon suggests that when CO2 displacement is performed at high water cut period, the water cut does not decrease immediately and will remain high for a period of time, then a rapid decline of water cut and increase of oil production can be observed.


Author(s):  
M J Moore

The increase, in recent years, in the size and efficiency of gas turbines burning natural gas in combined cycle has occurred against a background of tightening environmental legislation on the emission of nitrogen oxides. The higher turbine entry temperatures required for efficiency improvement tend to increase NOx production. First-generation emission control systems involved water injection and catalytic reduction and were relatively expensive to operate. Dry low-NOx combustion systems have therefore been developed but demand more primary air for combustion. This gives added incentive to the reduction of air requirements for cooling the combustor and turbine blading. This paper reviews the various approaches adopted by the main gas turbine manufacturers which are achieving very low levels of NOx emission from natural gas combustion. Further developments, however, are necessary for liquid fuels.


Sign in / Sign up

Export Citation Format

Share Document