Field Conversion of a Low-Firing Frame 7B Gas Turbine Power Plant to Ultra-Low Emission Combustion

Author(s):  
Nicolas Demougeot ◽  
Jeffrey A. Benoit

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-commissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. NRG’s Gilbert power plant based in Milford, NJ began commercial operation in 1974 and is fitted with four (4) natural gas fired GE’s 7B gas turbine generators with two each exhausting to HRSG’s feeding one (1) steam turbine generator. The gas turbine units, originally configured with diffusion flame combustion systems with water injection, were each emitting 35 ppm NOx with the New Jersey High Energy Demand Day (HEED) regulatory mandate to reduce NOx emissions to sub 10 ppm by May 1st, 2015. Studies were conducted by the operator to evaluate the economic viability & installation of environmental controls to reduce NOx emissions. It was determined that installation of post-combustion environmental controls at the facility was both cost prohibitive and technically challenging, and would require a fundamental reconfiguration of the facility. Based on this economic analysis, the ultra-low emission combustion system conversion package was selected as the best cost-benefit solution. This technical paper will focus on the ultra low emissions technology and key features employed to achieve these low emissions, a description of the design challenges and solution to those, a summary of the customer considerations in down selecting options and an overview of the conversion scope. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.

Author(s):  
Frederick E. Moreno ◽  
Philip J. Divirgilio

A gas turbine cogeneration system is described that offers fuel flexibility plus substantially reduced NOx emissions without water injection or selective catalytic reduction (SCR). The entirely new turbine design developed by TurboEnergy Systems permits boiler repowering and other cogeneration applications. The first application will be in the California heavy oilfields; the system will be retrofitted to an existing 50 million btu/hr oilfield steam generator used in thermally enhanced oil recovery. The turbine, rated at 1250 kw (site output), was sized to match the combustion air flow requirements of the steam generator. A reheated design was selected to maximize power output from the limited airflow available and to maximize the exhaust temperature for cogeneration and industrial process applications. The oilfield cogeneration system being developed includes a new heavy oil burner for the steam generator which will be fired on the high temperature exhaust from the turbine. The system will also provide low NOx emissions, below the tightest projected standards in Kern County, which has a large concentration of heavy oilfields. Both the turbine and the steam generator burner will burn heavy (API 13 gravity) crude oil. The paper describes the overall system, its interface with the existing process, the design techniques used, and presents performance projections. Field testing will begin at a site near Bakersfield, California, starting in early to mid-1987.


Author(s):  
William E. Hauhe ◽  
Gary L. Haub ◽  
Charles O. Myers ◽  
Donald C. Guthan ◽  
David O. Fitts

This paper describes user experience with the operation and maintenance of a gas turbine based cogeneration plant operating at base load while injecting up to 80 gpm (303 l/min) of water to control NOx emissions to 42 ppmv (at 15% O2). The plant, located in the Kern River Oil Field, near Bakersfield, California, has produced an average of 294.6 MWe and 1.903 million lbs/hr (0.863 million kg/hr) of steam since achieving commercial operation in August, 1985. To date, the plant has achieved an operational reliability and availability of 98.9% and 95.4%, respectively. The effects of water injection on combustion hardware, as well as, overall gas turbine reliability and availability and equipment enhancements will be discussed.


Author(s):  
Wei Jiang ◽  
Ruxian Fang ◽  
Jamil A. Khan ◽  
Roger A. Dougal

Fuel Cell is widely regarded as a potential alternative in the electric utility due to its distinct advantages of high energy conversion efficiency, low environmental impact and flexible uses of fuel types. In this paper we demonstrate the enhancement of thermal efficiency and power density of the power plant system by incorporating a hybrid cycle of Solid Oxide Fuel Cell (SOFC) and gas turbine with appropriate configurations. In this paper, a hybrid system composed of SOFC, gas turbine, compressor and high temperature heat exchanger is developed and simulated in the Virtual Test Bed (VTB) computational environment. The one-dimensional tubular SOFC model is based on the electrochemical and thermal modeling, accounting for the voltage losses and temperature dynamics. The single cell is discretized using a finite volume method where all the governing equations are solved for each finite volume. Simulation results show that the SOFC-GT hybrid system could achieve a 70% total electrical efficiency (LHV) and an electrical power output of 853KW, around 30% of which is produced by the power turbine. Two conventional power plant systems, i.e. gas turbine recuperative cycle and pure Fuel Cell power cycle, are also simulated for the performance comparison to validate the improved performance of Fuel Cell/Gas Turbine hybrid system. Finally, the dynamic behavior of the hybrid system is presented and analyzed based on the system simulation.


Author(s):  
Jeffrey A. Benoit ◽  
Charles Ellis ◽  
Joseph Cook

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-comissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. One Las Vegas Nevada, USA operator, NV Energy, with four (4) natural gas fired W501B6 Combined Cycle units at their Edward W. Clark Generating Station, was in this situation in 2006. The units, originally configured with diffusion flame combustion systems, were permitted at 103 ppm NOx with regulatory mandates to significantly reduce NOx emissions to below 5ppm by the end of 2009. Studies were conducted by the operator to evaluate the economic viability of using a Selective Catalytic Reduction (SCR) system, which would have forced significant modifications to the exhaust system and heat recovery steam generator (HRSG), or convert the turbines to operate with dry low-emissions combustion systems. Based on life cycle cost and installation complexity, the ultra-low emission combustion system was selected. This technical paper focuses on a short summary of the end user considerations in downselecting options, the ultra low emissions technology and key features employed to achieve these low emissions, an overview of the conversion scope and a review and description of the control technology employed. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Author(s):  
Kenneth O. Smith ◽  
Leonard C. Angello ◽  
F. Richard Kurzynske

The design and initial rig testing of an ultra-low NOx gas turbine combustor primary zone are described. A lean premixed, swirl-stabilized combustor was evaluated over a range of pressures up to 10.7 × 105 Pa (10.6 atm) using natural gas. The program goal of reducing NOx emissions to 10 ppm (at 15% O2) with coincident low CO emissions was achieved at all combustor pressure levels. Appropriate combustor loading for ultra-low NOx operation was determined through emissions sampling within the primary zone. The work described represents a first step in developing an advanced gas turbine combustion system that can yield ultra-low NOx levels without the need for water injection and selective catalytic reduction.


2020 ◽  
Vol 5 (12) ◽  
pp. 39-45
Author(s):  
Basharat Salim ◽  
Jamal Orfi ◽  
Shaker Saeed Alaqel

The proper utilization of all the available forms of energy resources has become imminent to meet the power requirement and energy demand in both the developed and developing countries of the world. Even though the emphasis is given to the renewable resources in most parts of the world, but fossil fuels will still remain the main resources of energy as these can meet both normal and peak demands. Saudi Arab has number of power plant based on natural gas and fuel that are spread in all its regions. These power plants have aeroderivative gas turbine units supplied by General Electric Company as main power producing units. These units work on dual fuel systems. These units work as simple gas turbine units to meat peak demands and as part of combined cycle otherwise. The subject matter of this study is the performance of one of the units of a power plant situated near Riyadh city of Saudi Arab. This unit also works both as simple gas turbine unit and as a part of combined cycle power plant unit. A parametric based performance evaluation of the unit has been carried out to study both energetic and exergetic performance of the unit for both simple and combined cycle operation. Effect of compressor inlet temperature, turbine inlet temperature, pressure ratio of the compressor, the stage from which bleed off air have been taken and percentage of bleed off air from the compressor on the energetic and exergetic performance of the unit have been studied. The study reveals that all these parameters effect the performance of the unit in both modes of operation.


Author(s):  
Urmila C. Reddy ◽  
Christine E. Blanchard ◽  
Barry C. Schlein

Pratt & Whitney has developed a novel water-injected Industrial Gas Turbine (IGT) combustor liner design that has demonstrated significant reduction in CO emissions when compared to typical film cooled combustor designs. The CO reduction demonstrated in a prototype test shows that the CO quenching due to cooler film temperatures near the liner wall is a significant source of CO emissions in a conventional water-injected combustor operating on natural gas fuel. This finding paved the way for a combustor design that reduces CO emissions while still maintaining low levels of NOx emissions. This design also has potential for lower NOx since the low CO emissions characteristic enables increased water-injection. This paper presents the emissions characteristics measured on prototype hardware and the design of the engine hardware for future validation. Significant reduction in gaseous emissions was demonstrated with the testing of a prototype at the United Technologies Research Center in East Hartford, CT. This reduction in emissions compared to the baseline film-cooled design for a given operating condition has many benefits to the customer, including reduced need for exhaust catalyst cleanup and extended operating times while still meeting site permits specified in CO tons per year. Other benefits may include the ability to guarantee lower NOx emissions through increased water injection for the current CO emissions output.


Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

With renewed interest in nuclear power to meet the world’s future energy demand, the Generation IV nuclear reactors are the next step in the deployment of nuclear power generation. However, for the potentials of these nuclear reactor designs to be fully realized, its suitability, when coupled with different configurations of closed-cycle gas turbine power conversion systems, have to be explored and performance compared for various possible working fluids over a range of operating pressures and temperatures. The purpose of this paper is to carry out performance analysis at the design and off-design conditions for a Generation IV nuclear-powered reactor in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as working fluid in the cycle. This analysis is demonstrated in GTACYSS; a performance and preliminary design code developed by the authors for closed-cycle gas turbine simulations. The results obtained shows that the choice of working fluid controls the range of cycle operating pressures, temperatures and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions.


Author(s):  
W. S. Y. Hung

An analytical model has been developed to simulate the thermal NOx emission processes in various gas turbine combustors for a variety of fuels. The NOx emissions predicted by the model are in excellent agreement with available laboratory and field data. Its capability to simulate the water injection process accurately has been demonstrated previously. Comprehensive understanding of the NOx emission processes in gas turbine combustors has been gained through the current analytical studies. NOx emissions as influenced by ambient humidity, changes in combustor geometry, type of fuel used and changes in operating parameters can now be evaluated quantitatively through a priori prediction and have been verified by available laboratory and field data. The analytical model has also been demonstrated to be a powerful guidance tool in directing the experimental testing program in an effort to reduce NOx emissions from gas turbine combustors.


Sign in / Sign up

Export Citation Format

Share Document