scholarly journals An Experimentally Verified NOx Emission Model for Gas Turbine Combustors

Author(s):  
W. S. Y. Hung

An analytical model has been developed to simulate the thermal NOx emission processes in various gas turbine combustors for a variety of fuels. The NOx emissions predicted by the model are in excellent agreement with available laboratory and field data. Its capability to simulate the water injection process accurately has been demonstrated previously. Comprehensive understanding of the NOx emission processes in gas turbine combustors has been gained through the current analytical studies. NOx emissions as influenced by ambient humidity, changes in combustor geometry, type of fuel used and changes in operating parameters can now be evaluated quantitatively through a priori prediction and have been verified by available laboratory and field data. The analytical model has also been demonstrated to be a powerful guidance tool in directing the experimental testing program in an effort to reduce NOx emissions from gas turbine combustors.

1977 ◽  
Vol 99 (4) ◽  
pp. 575-579
Author(s):  
W. S. Y. Hung

An experimentally verified NOx emission model for gas turbines has been reported previously. The model has been modified to determine the NOx emission levels of various fuels as compared to No. 2 distillate oil. The NOx emission levels of various conventional and unconventional gas turbine fuels of interest are predicted. The predicted NOx emission levels for these fuels, including methanol, ethanol, propane, and hydrogen, are in good agreement with available laboratory and field data from stationary, aircraft, and automotive gas turbine combustors. The predicted results should be applicable to other fuel-lean, heterogeneous combustion systems.


Author(s):  
Wilfred S. Y. Hung ◽  
Alan Campbell

The advent of dry, low-emissions combustion systems for gas turbine applications and the trend towards requiring emissions monitoring and lower NOx limits by regulatory agencies, have created renewed interests in the uncertainty of NOx emissions measurements. This paper addresses the uncertainty of measuring NOx emissions from gas turbines in the field, including gas turbines equipped with conventional combustion systems, with or without water injection, with dry, low-emissions combustion systems and with exhaust clean-up systems. The sources of errors, using current state-of-the-art instruments, in field emissions testing or continuous emission monitoring of gas turbines to meet specific emission (ppmvd @ 15% O2) as well as mass emission rate (kg/hr) limits are identified. The uncertainty of measuring NOx emissions from gas turbines is estimated and compared with Geld data. The effect of NOx emission levels on measurement uncertainty is also addressed. The minimus NOx measurement uncertainty is determined and is in good agreement with what is currently allowed by regulatory agencies.


1976 ◽  
Vol 98 (3) ◽  
pp. 320-326 ◽  
Author(s):  
W. S. Y. Hung

A diffusion limited model has been described previously to simulate accurately the thermal NOx emission processes in various gas turbine combustors for fuels containing negligible amounts of fuel bound nitrogen. The application of this model to simulate accurately the water injection process has also been demonstrated. It is currently proposed that any bound nitrogen in fuel is completely reacted to form nitric oxide during the hydrocarbon combustion process; the ultimate net conversion is determined subsequently based on the Zeldovich mechanisms. With this additional assumption, this model has been generalized to include the use of fuels containing significant amounts of bound nitrogen, such as crude or residual oils. The predicted NOx emissions from these nitrogen containing fuels are in excellent agreement with laboratory and field data including the effect of water injection. Comprehensive understanding of the NOx formation processes has been gained from the current analytical study.


Author(s):  
Nicolas Demougeot ◽  
Jeffrey A. Benoit

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-commissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. NRG’s Gilbert power plant based in Milford, NJ began commercial operation in 1974 and is fitted with four (4) natural gas fired GE’s 7B gas turbine generators with two each exhausting to HRSG’s feeding one (1) steam turbine generator. The gas turbine units, originally configured with diffusion flame combustion systems with water injection, were each emitting 35 ppm NOx with the New Jersey High Energy Demand Day (HEED) regulatory mandate to reduce NOx emissions to sub 10 ppm by May 1st, 2015. Studies were conducted by the operator to evaluate the economic viability & installation of environmental controls to reduce NOx emissions. It was determined that installation of post-combustion environmental controls at the facility was both cost prohibitive and technically challenging, and would require a fundamental reconfiguration of the facility. Based on this economic analysis, the ultra-low emission combustion system conversion package was selected as the best cost-benefit solution. This technical paper will focus on the ultra low emissions technology and key features employed to achieve these low emissions, a description of the design challenges and solution to those, a summary of the customer considerations in down selecting options and an overview of the conversion scope. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


Author(s):  
Frederick E. Moreno ◽  
Philip J. Divirgilio

A gas turbine cogeneration system is described that offers fuel flexibility plus substantially reduced NOx emissions without water injection or selective catalytic reduction (SCR). The entirely new turbine design developed by TurboEnergy Systems permits boiler repowering and other cogeneration applications. The first application will be in the California heavy oilfields; the system will be retrofitted to an existing 50 million btu/hr oilfield steam generator used in thermally enhanced oil recovery. The turbine, rated at 1250 kw (site output), was sized to match the combustion air flow requirements of the steam generator. A reheated design was selected to maximize power output from the limited airflow available and to maximize the exhaust temperature for cogeneration and industrial process applications. The oilfield cogeneration system being developed includes a new heavy oil burner for the steam generator which will be fired on the high temperature exhaust from the turbine. The system will also provide low NOx emissions, below the tightest projected standards in Kern County, which has a large concentration of heavy oilfields. Both the turbine and the steam generator burner will burn heavy (API 13 gravity) crude oil. The paper describes the overall system, its interface with the existing process, the design techniques used, and presents performance projections. Field testing will begin at a site near Bakersfield, California, starting in early to mid-1987.


Author(s):  
William E. Hauhe ◽  
Gary L. Haub ◽  
Charles O. Myers ◽  
Donald C. Guthan ◽  
David O. Fitts

This paper describes user experience with the operation and maintenance of a gas turbine based cogeneration plant operating at base load while injecting up to 80 gpm (303 l/min) of water to control NOx emissions to 42 ppmv (at 15% O2). The plant, located in the Kern River Oil Field, near Bakersfield, California, has produced an average of 294.6 MWe and 1.903 million lbs/hr (0.863 million kg/hr) of steam since achieving commercial operation in August, 1985. To date, the plant has achieved an operational reliability and availability of 98.9% and 95.4%, respectively. The effects of water injection on combustion hardware, as well as, overall gas turbine reliability and availability and equipment enhancements will be discussed.


Author(s):  
Andrea Lazzaretto ◽  
Andrea Toffolo ◽  
Sebastiano Trolese

Precise performance evaluation at design and off-design operations is needed for a correct management of power plants. This need is particularly strong in gas turbine power plants which can quickly react to load variations and are very sensitive to ambient conditions. The paper aims at presenting a simple tool to determine the values of the thermodynamic quantities in each point of the plant and the overall plant performances of a real gas turbine plant. Starting from experimental data, a zero-dimensional model is developed which properly considers the effect of ambient conditions and water injection for pollutant abatement at different load settings under the action of the control system. An emission model taken from the literature is also included, after tuning on experimental data, to predict carbon monoxide and nitrogen oxide pollution.


Author(s):  
Kenneth O. Smith ◽  
Leonard C. Angello ◽  
F. Richard Kurzynske

The design and initial rig testing of an ultra-low NOx gas turbine combustor primary zone are described. A lean premixed, swirl-stabilized combustor was evaluated over a range of pressures up to 10.7 × 105 Pa (10.6 atm) using natural gas. The program goal of reducing NOx emissions to 10 ppm (at 15% O2) with coincident low CO emissions was achieved at all combustor pressure levels. Appropriate combustor loading for ultra-low NOx operation was determined through emissions sampling within the primary zone. The work described represents a first step in developing an advanced gas turbine combustion system that can yield ultra-low NOx levels without the need for water injection and selective catalytic reduction.


Sign in / Sign up

Export Citation Format

Share Document