User Experience: Operating a 300 MW Base Load Cogeneration Plant With High Water Injection Rates to Control NOx Emissions

Author(s):  
William E. Hauhe ◽  
Gary L. Haub ◽  
Charles O. Myers ◽  
Donald C. Guthan ◽  
David O. Fitts

This paper describes user experience with the operation and maintenance of a gas turbine based cogeneration plant operating at base load while injecting up to 80 gpm (303 l/min) of water to control NOx emissions to 42 ppmv (at 15% O2). The plant, located in the Kern River Oil Field, near Bakersfield, California, has produced an average of 294.6 MWe and 1.903 million lbs/hr (0.863 million kg/hr) of steam since achieving commercial operation in August, 1985. To date, the plant has achieved an operational reliability and availability of 98.9% and 95.4%, respectively. The effects of water injection on combustion hardware, as well as, overall gas turbine reliability and availability and equipment enhancements will be discussed.

Author(s):  
P. P. Singh ◽  
P. R. Mulik ◽  
A. Cohn

A total of four combustion tests studying the response of various water/fuel emulsion rates on NOx emissions have been conducted on: (a) Paraho shale oil, (b) H-Coal© (372–522 K) distillate, (c) No. 2 oil doped with quinoline, (d) H-Coal© (505–616 K) distillate, utilizing a 0.14 m dia gas turbine can-type combustor at base-load conditions. Each test fuel run was proceeded with a base-line fuel run with No. 2 distillate oil. The results indicate that the effectiveness of water injection to reduce NOx decreased rapidly with an increase in the fuel-bound nitrogen (FBN) content of the test fuels. The smoke number, in general, decreased with increased water injection, while carbon monoxide and unburned hydrocarbons increased at high water/fuel flow rates.


1983 ◽  
Vol 105 (3) ◽  
pp. 430-437
Author(s):  
P. P. Singh ◽  
P. R. Mulik ◽  
A. Cohn

A total of four combustion tests studying the response of various water/fuel emulsion rates on NOx emissions have been conducted on: (a) Paraho shale oil, (b) H-Coal© (372x–522 K) distillate, (c) No. 2 oil doped with quinoline, (d) H-Coal© (505–616 K) distillate, utilizing a 0.14-m dia gas turbine can-type combustor at base-load conditions. Each test fuel run was proceeded with a base-line fuel run with No. 2 distillate oil. The results indicate that the effectiveness of water injection to reduce NOx decreased rapidly with an increase in the fuel-bound nitrogen (FBN) content of the test fuels. The smoke number, in general, decreased with increased water injection, while carbon monoxide and unburned hydrocarbons increased at high water/fuel flow rates.


Author(s):  
S. T. O’Neill

The CW251B10 Gas Turbine has been in service at the Procter & Gamble Paper Mill located at Mehoopany, Pennsylvania since July 1985, and has exhibited outstanding reliability and availability since that time. It operates continuously at base load supplying both electricity and process air for the plant. This paper reviews the operating history of the gas turbine, and describes some of the problems experienced, together with their solutions.


Author(s):  
Nicolas Demougeot ◽  
Jeffrey A. Benoit

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-commissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. NRG’s Gilbert power plant based in Milford, NJ began commercial operation in 1974 and is fitted with four (4) natural gas fired GE’s 7B gas turbine generators with two each exhausting to HRSG’s feeding one (1) steam turbine generator. The gas turbine units, originally configured with diffusion flame combustion systems with water injection, were each emitting 35 ppm NOx with the New Jersey High Energy Demand Day (HEED) regulatory mandate to reduce NOx emissions to sub 10 ppm by May 1st, 2015. Studies were conducted by the operator to evaluate the economic viability & installation of environmental controls to reduce NOx emissions. It was determined that installation of post-combustion environmental controls at the facility was both cost prohibitive and technically challenging, and would require a fundamental reconfiguration of the facility. Based on this economic analysis, the ultra-low emission combustion system conversion package was selected as the best cost-benefit solution. This technical paper will focus on the ultra low emissions technology and key features employed to achieve these low emissions, a description of the design challenges and solution to those, a summary of the customer considerations in down selecting options and an overview of the conversion scope. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


Author(s):  
Frederick E. Moreno ◽  
Philip J. Divirgilio

A gas turbine cogeneration system is described that offers fuel flexibility plus substantially reduced NOx emissions without water injection or selective catalytic reduction (SCR). The entirely new turbine design developed by TurboEnergy Systems permits boiler repowering and other cogeneration applications. The first application will be in the California heavy oilfields; the system will be retrofitted to an existing 50 million btu/hr oilfield steam generator used in thermally enhanced oil recovery. The turbine, rated at 1250 kw (site output), was sized to match the combustion air flow requirements of the steam generator. A reheated design was selected to maximize power output from the limited airflow available and to maximize the exhaust temperature for cogeneration and industrial process applications. The oilfield cogeneration system being developed includes a new heavy oil burner for the steam generator which will be fired on the high temperature exhaust from the turbine. The system will also provide low NOx emissions, below the tightest projected standards in Kern County, which has a large concentration of heavy oilfields. Both the turbine and the steam generator burner will burn heavy (API 13 gravity) crude oil. The paper describes the overall system, its interface with the existing process, the design techniques used, and presents performance projections. Field testing will begin at a site near Bakersfield, California, starting in early to mid-1987.


2020 ◽  
Vol 194 ◽  
pp. 04046
Author(s):  
Xiulan Zhu ◽  
Yanlong Ran ◽  
Wenjie Guo ◽  
Ke Gai ◽  
Yanju Li ◽  
...  

With the long-term water injection development of Longdong oilfields, most of the oilfield blocks have been fully in the mid-high water cut period, and the amount of oil production wastewater is increasing year by year. In order to prevent the waste of resources and energy of oil production sewage, the oil production sewage after reaching the standard is treated for reinjection, which will ensure the sustainable development of the oil field. Oil production wastewater contains crude oil, solid-phase suspended solids and other pollutants, with high salinity, and problems such as difficulty in oil-water separation, sludge, scaling and corrosion. The sewage treatment system uses a multifunctional water treatment device to effectively remove oil and filter through the “special microorganism + air flotation + filtration” process, and build a sludge sewage tank for sludge discharge and backwashing. The reformed oil recovery wastewater reinjection treatment technology turns “sewage” into “clear flow”, reduces operating costs, improves wastewater treatment efficiency, and meets the water quality requirements of oilfield reinjection water.


Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Mangani ◽  
Stefano Cocchi ◽  
Roberto Modi

Medium- and low-LHV fuels are receiving a continuously growing interest in stationary power applications. Besides that, since in many applications the fuels available at a site can be time by time of significantly different composition, fuel flexibility has become one of the most important requirements to be taken into account in developing power systems. A test campaign, aimed to provide a preliminary assessment of a small power gas turbine’s fuel flexibility, was carried over a full-scale GE10 prototypical unit, located at the Nuovo-Pignone manufacturing site, in Florence. The engine is a single shaft, simple cycle gas turbine designed for power generation applications, rated at 11 MW electrical power and equipped with a silos-type combustor. A variable composition gas fuel was obtained by mixing natural gas with CO2 to about 40% by vol. at engine base-load condition. Tests involved two different diffusive combustion systems: the standard version, designed for operation with natural gas, and a specific system designed for low-LHV fuels. Tests performed aimed to investigate both ignition limits and combustors’ performances, focusing on hot parts’ temperatures and pollutant emissions. Regarding NOx emissions, data collected during standard combustor’s tests were matched a simple scaling law (as a function of cycle parameters and CO2 concentration in the fuel mixture), which can be used in similar applications as a NOx predictive tool. In a following step, a CFD study was performed in order to verify in detail the effects of LHV reduction on flame structure and to compare measured and calculated NOx. STAR-CD™ code was employed as main CFD solver while turbulent combustion and NOx models were specifically developed and implemented using STAR’s user-subroutine features. Both models are based on classical laminar-flamelet approach. Three different operating points were considered at base-load conditions, varying CO2 concentration (0%, 20% and 30% vol. simulated). Numerical simulations point out the flexibility of the GE10 standard combustor to assure flame stabilization even against large variation of fuel characteristics. Calculated NOx emissions are in fairly good agreement with measured data confirming the validity of the adopted models.


Author(s):  
Kenneth O. Smith ◽  
Leonard C. Angello ◽  
F. Richard Kurzynske

The design and initial rig testing of an ultra-low NOx gas turbine combustor primary zone are described. A lean premixed, swirl-stabilized combustor was evaluated over a range of pressures up to 10.7 × 105 Pa (10.6 atm) using natural gas. The program goal of reducing NOx emissions to 10 ppm (at 15% O2) with coincident low CO emissions was achieved at all combustor pressure levels. Appropriate combustor loading for ultra-low NOx operation was determined through emissions sampling within the primary zone. The work described represents a first step in developing an advanced gas turbine combustion system that can yield ultra-low NOx levels without the need for water injection and selective catalytic reduction.


Author(s):  
Urmila C. Reddy ◽  
Christine E. Blanchard ◽  
Barry C. Schlein

Pratt & Whitney has developed a novel water-injected Industrial Gas Turbine (IGT) combustor liner design that has demonstrated significant reduction in CO emissions when compared to typical film cooled combustor designs. The CO reduction demonstrated in a prototype test shows that the CO quenching due to cooler film temperatures near the liner wall is a significant source of CO emissions in a conventional water-injected combustor operating on natural gas fuel. This finding paved the way for a combustor design that reduces CO emissions while still maintaining low levels of NOx emissions. This design also has potential for lower NOx since the low CO emissions characteristic enables increased water-injection. This paper presents the emissions characteristics measured on prototype hardware and the design of the engine hardware for future validation. Significant reduction in gaseous emissions was demonstrated with the testing of a prototype at the United Technologies Research Center in East Hartford, CT. This reduction in emissions compared to the baseline film-cooled design for a given operating condition has many benefits to the customer, including reduced need for exhaust catalyst cleanup and extended operating times while still meeting site permits specified in CO tons per year. Other benefits may include the ability to guarantee lower NOx emissions through increased water injection for the current CO emissions output.


Author(s):  
Tatsuo Fujii ◽  
Takakazu Uenaka ◽  
Hitoshi Masuo

The first Kawasaki-ABB GT13E2 gas turbine began operating at Kawasaki Gas Turbine Research Center (KGRC) in Sodegaura city, Japan in January 1994. This facility is a simple-cycle power station and is operated in DSS (Daily Start and Stop) operation mode as a peaking unit, and its output electricity is delivered to Tokyo Electric Power Company (TEPCO). The GT13E2 gas turbine at KGRC was manufactured jointly by Kawasaki Heavy Industries (KHI) and Asea Brown Boveri (ABB). KHI and ABB have a joint test program with this facility to research for high reliability, high performance and low emission for the GT13E2 and future gas turbines. The performance of the KGRC GT13E2 has been monitored continuously. It was found from these monitored data that the thermal efficiency has been maintained at a high level and could be recovered by compressor washing when the compressor was fouled. Several factors which influence NOx emissions were studied on the gas turbine, and it was found that atmospheric humidity has a major influence on NOx emissions. Also other factor such as the position of the variable inlet guide vanes (VIGV) and fuel gas flow through each burner of the combustor were adjusted to reduce NOx emission. As a result, NOx emission from the KGRC GT13E2 has been maintained at a very low level. Reliability, availability and maintainability (RAM) has been evaluated by Operational Reliability Analysis Program (ORAP®) of Strategic Power Systems, Inc. (SPS) in order to identify and improve RAM performance of the GT13E2 at KGRC. These analyses made it clear what kind of outage had an impact on the reliability, availability and starting reliability of the KGRC GT13E2 and appropriate actions have increased the starting reliability. This paper describes operating experiences of the KGRC GT13E2 including performance, emissions and RAM performance.


Sign in / Sign up

Export Citation Format

Share Document