Axial Flow Compressor Design Optimization: Part II — Through-Flow Analysis

Author(s):  
Aristide Massardo ◽  
Antonio Satta ◽  
Martino Marini

A new technique is presented for the design optimization of an axial-flow compressor stage. The procedure allows for optimization of the complete radial distribution of the geometry since the variables, chosen to represent the three dimensional geometry of the stage, are coefficients of suitable polynomials. Evaluation of the objective function is obtained with a through-flow type calculation, which has acceptable speed and stability qualities. Some examples are given of the possibility to use the procedure both for redesign and, together with what was presented in Part I, for the complete design of axial-flow compressor stages.

1990 ◽  
Vol 112 (3) ◽  
pp. 405-410 ◽  
Author(s):  
A. Massardo ◽  
A. Satta ◽  
M. Marini

A new technique is presented for the design optimization of an axial-flow compressor stage. The procedure allows for optimization of the complete radial distribution of the geometry, since the variables chosen to represent the three-dimensional geometry of the stage are coefficients of suitable polynomials. Evaluation of the objective function is obtained with a throughflow calculation, which has acceptable speed and stability qualities. Some examples are given of the possibility to use the procedure both for redesign and, together with what was presented in Part I, for the complete design of axial-flow compressor stages.


2018 ◽  
Vol 78 ◽  
pp. 271-279 ◽  
Author(s):  
Mauro Righi ◽  
Vassilios Pachidis ◽  
László Könözsy ◽  
Lucas Pawsey

2012 ◽  
Vol 532-533 ◽  
pp. 474-478
Author(s):  
Wei Hua Cheng ◽  
Mian Chang Li ◽  
Chuan Peng Li

This paper conducts numerical simulation to a 15-stage civil axial flow compressor and obtains its main parameters distribution and performance curve by a full three-dimensional viscid flow computation software. The computation result indicates that, the developed axial flow compressor meets the anticipated design requirements, and satisfies the customers’ indicators. Under the designed compression ratio, the difference between the maximum air supply quantity in summer and the minimum air supply quantity in winter is 22%. By comparing the operating conditions and data analysis, obtained the change trend of axial velocity, static pressure and temperature, and Ma, and discovered that, under opening of 48° and outlet back pressure of 550KPa, flow separation occurred on the section of machine set close to hud, which indicated that operating condition was close to surging condition.


Author(s):  
Dario Bruna ◽  
Carlo Cravero ◽  
Mark G. Turner

The development of a computational tool (MP-LOS) for the aerodynamic loss modeling and prediction for axial-flow compressor blade sections is presented in this paper. A state-of-the-art quasi 3-D flow solver, MISES, has been used for the flow analysis on existing airfoil geometries in many working conditions. Different values of inlet flow angle, inlet Mach number, AVDR, Reynolds number and solidity have been chosen to investigate a possible working range. The target is a loss prediction formulation that will be introduced into throughflow or axisymmetric Navier-Stokes codes for the performance prediction of multistage axial flow compressors. The loss coefficient has been correlated to the flow parameters that have shown an influence on the profile loss for the blades under study. The proposed correlation, using the described computational approach, can be extended to any profile family with the aid of any code for the parametric design of blade profiles.


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


1992 ◽  
Vol 114 (3) ◽  
pp. 675-685 ◽  
Author(s):  
A. Goto

The effect of difference in rotor tip clearance on the mean flow fields and unsteadiness and mixing across a stator blade row were investigated using hot-wire anemometry, pressure probes, flow visualization, and the ethylene tracer-gas technique on a single-stage axial flow compressor. The structure of the three-dimensional flow fields was discussed based on results of experiments using the 12-orientation single slanted hotwire technique and spectrum analysis of velocity fluctuation. High-pass filtered measurements of turbulence were also carried out in order to confirm small-scale velocity fluctuation, which is more realistically referred to as turbulence. The span-wise distribution of ethylene gas spreading, estimated by the measured small-scale velocity fluctuation at the rotor exit, agreed quite well with that which was experimentally measured. This fact suggests the significant role of turbulence, generated within the rotor, in the mixing process across the downstream stator. The value of the maximum mixing coefficient in the tip region was found to increase linearly as the tip clearance became enlarged, starting from the value at midspan.


1953 ◽  
Vol 57 (511) ◽  
pp. 463-463
Author(s):  
R. G. Taylor

In Mr. J. M. Stephenson's Technical Note, “ The Elimination of Wall Effects in Axial-Flow Compressor Stages,” in the April 1953 issue of the Journal, the author suggests that the blade rows of an axial flow compressor are so closely spaced as to ensure that the axial velocity profile is unchanged across the rows. Whether this statement is correct or not such an assumption regarding the axial velocity profile is a basic design condition and when made it will not leave any flexibility in the choice of the function f(r).


Energies ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 296 ◽  
Author(s):  
Tao Ning ◽  
Chun-Wei Gu ◽  
Wei-Dou Ni ◽  
Xiao-Tang Li ◽  
Tai-Qiu Liu

Sign in / Sign up

Export Citation Format

Share Document