scholarly journals Ceramic Component Processing Development for Advanced Gas-Turbine Engines

Author(s):  
B. J. McEntire ◽  
R. R. Hengst ◽  
W. T. Collins ◽  
A. P. Taglialavore ◽  
R. L. Yeckley ◽  
...  

Norton/TRW Ceramics (NTC) is performing ceramic component development as part of the DOE-sponsored Advanced Turbine Technology Applications Project (ATTAP). NTC’s work is directed at developing manufacturing technologies for rotors, stators, vane-seat platforms and scrolls. The first three components are being produced from a HIPed Si3N4, designated NT154. Scrolls were prepared from a series of siliconized silicon-carbide (Si-SiC) materials designated NT235 and NT230. Efforts during the first three years of this five-year program are reported. Developmental work has been conducted on all aspects of the fabrication process using Taguchi experimental design techniques. Appropriate materials and processing conditions were selected for powder beneficiation, densification and heat-treatment operations. Component forming has been conducted using thermal-plastic-based injection molding (IM), pressure slip-casting (PSC), and Quick-Set™ injection molding. An assessment of material properties for various components from each material and process were made. For NT154, characteristic room-temperature strengths and Weibull Moduli were found to be range between ≈920 MPa to ≈1 GPa and ≈10 to ≈19, respectively. Process-induced inclusions proved to be the dominant strength limiting defect regardless of the chosen forming method. Correction of the lower observed values is being addressed through equipment changes and upgrades. For the NT230 and NT235 Si-SiC, characteristic room-temperature strengths and Weibull Moduli ranged from ≈240 to ≈420 MPa, and 8 to 10, respectively. At 1370°C, strength values for both the HIPed Si3N4 and the Si-SiC materials ranged from ≈480 MPa to ≈620 MPa. The durability of these materials as engine components is currently being evaluated.

1993 ◽  
Vol 115 (1) ◽  
pp. 1-8 ◽  
Author(s):  
B. J. McEntire ◽  
R. R. Hengst ◽  
W. T. Collins ◽  
A. P. Taglialavore ◽  
R. L. Yeckley

Norton/TRW Ceramics (NTC) is developing ceramic components as part of the DOE-sponsored Advanced Turbine Technology Applications Project (ATTAP). NTC’s work is directed at developing manufacturing technologies for rotors, stators, vane-seat platforms, and scrolls. The first three components are being produced from a HIPed Si3N4, designated NT154. Scrolls were prepared from a series of siliconized silicon-carbide (Si-SiC) materials designated NT235 and NT230. Efforts during the first three years of this five-year program are reported. Developmental work has been conducted on all aspects of the fabrication process using Taguchi experimental design techniques. Appropriate materials and processing conditions were selected for power beneficiation, densification, and heat-treatment operations. Component forming has been conducted using thermal-plastic-based injection molding (IM), pressure slip-casting (PSC), and Quick-Set™ injection molding.1 An assessment of material properties for various components from each material and process were made. For NT154, characteristic room-temperature strengths and Weibull Moduli were found to range between ≈920 MPa to ≈1 GPa and ≈10 to ≈19, respectively. Process-induced inclusions proved to be the dominant strength-limiting defect regardless of the chosen forming method. Correction of the lower observed values is being addressed through equipment changes and upgrades. For the NT230 and NT235 Si-SiC, characteristic room-temperature strengths and Weibull Moduli ranged from ≈240 to ≈420 MPa, and 8 to 10, respectively. At 1370°C, strength values for both the HIPed Si3N4 and the Si-SiC materials ranged from ≈480 MPa to ≈690 MPa. The durability of these materials as engine components is currently being evaluated.


Author(s):  
W. D. Carruthers ◽  
J. R. Smyth

The Advanced Turbine Technology Applications Project (ATTAP) is addressing critical technologies for the application of ceramics in gas turbine engines. These technologies include design methods, component development, component fabrication, and engine testing. Both analytical and experimental methods are being used to develop design methods for improving resistance to impact and contact damage. Component improvements are directed at a carbon-free combustor, durable regenerator seals, and an impact-resistant turbine stage design. Subcontractors are utilizing engineered experiments to develop consistent processes to produce high-quality ceramic turbine rotors and other components. These efforts are aimed at achieving satisfactory operation during durability tests at temperatures up to 2500F and 300 hours operation.


Author(s):  
Edward M. House

Four Textron Lycoming TF40B marine gas turbine engines are used to power the U.S. Navy’s Landing Craft Air Cushion (LCAC) vehicle. This is the first hovercraft of this configuration to be put in service for the Navy as a landing craft. The TF40B has experienced compressor blade pitting, carbon erosion of the first turbine blade and hot corrosion of the hot section. Many of these problems were reduced by changing the maintenance and operation of the LCAC. A Component Improvement Program (CIP) is currently investigating compressor and hot section coatings better suited for operation in a harsh marine environment. This program will also improve the performance of some engine components such as the bleed manifold and bearing seals.


Author(s):  
T. B. Sweeting ◽  
F. J. Frechette ◽  
J. W. MacBeth

An update of the status of ceramic component development of the AGT Programs is presented. Activity on AGTO Program focussed on the following: successful transition from the prototype to engine configuration rotor, investigation of alternate rotor molding techniques, and completion of scroll assemblies. Progress on the Garrett AGT Program was highlighted by the introduction of plastic molding and extrusion to parts which were previously fabricated by slip casting and isopressing respectively.


Author(s):  
Trevor M. Cory ◽  
Karen A. Thole ◽  
Kathryn L. Kirsch ◽  
Ryan Lundgreen ◽  
Robin Prenter ◽  
...  

Abstract The introduction of particulates into gas turbine engines poses a serious threat to component durability. Particles drawn from the environment, such as ash or sand, can be introduced into the air system used to cool hot section components and drastically diminish cooling performance. In the current study, a dirt-laden coolant stream impinged on a double-walled cooling configuration, which was comprised of an impingement plate followed by an effusion-cooled plate. Experiments were conducted at both room temperature and at temperatures in excess of 750°C; flow conditions were varied to achieve different pressure ratios across the cooling configuration. Dirt particles were introduced into the coolant using two different methods: in discrete bursts, called slugs; or in a continuous feed ensuring a constant stream of particles. This continuous feed mechanism is at the crux of a new test facility created to introduce flexibility and precision in the control of dirt feed rates, particularly for very small (< 50 mg) amounts of dirt. The difference in capture efficiency and in dirt patterns between the two feed methods showed measurably different dirt accumulation levels on the cold side of the effusion plate at the same test conditions. Results show that the slug feed method caused higher capture efficiency and thicker dirt deposition on the effusion plate compared to the continuous feed.


Author(s):  
Tania Bhatia ◽  
G. V. Srinivasan ◽  
Sonia V. Tulyani ◽  
Robert A. Barth ◽  
Venkat R. Vedula ◽  
...  

Environmental barrier coatings (EBCs) are being developed for silicon carbide (SiC) based composites and monolithic silicon nitride (Si3N4) to protect against the accelerated oxidation and subsequent silica volatilization in high temperature high-pressure steam environments encountered in gas turbine engines. It has been found that the application of EBCs developed for SiC-based composites (EBCSiC) to monolithic silicon nitride results in a loss of room temperature mechanical strength of the monolithic substrate. In this paper, we discuss the development of a bond coat system tailored for monolithic silicon nitride that helps retain the strength of the substrate. Some of the unique requirements and challenges associated with the processing of non-line-of-sight EBCs for Si3N4 will also be discussed. Preliminary results from coating of airfoils will be presented.


1993 ◽  
Author(s):  
J. Mark Battison

Williams International has been actively investigating the use of ceramic materials in gas turbine engines for over 10 years. Ceramic component applications include both static and dynamic components such as combustors and turbine rotors. Component stresses, material properties, and cost, dictate attachment strategies. Non-metallic turbines with metal-to-non-metallic attachment schemes have been successfully demonstrated. This paper reviews a progression of attachment strategies that eventually led to a successful test of a non-metallic turbine in a gas turbine engine.


Author(s):  
James M. Dahl ◽  
John B. Hansen

This paper describes the methodology employed to produce a controlled expansion superalloy that has been successfully incorporated in several advanced aircraft gas turbine engines. Objectives of the original R&D study are reviewed in light of requirements given by potential customers. Properties of the alloy are presented and compared to those objectives. It is reported that the alloy has mechanical properties similar to those of the nickel-base alloy 718, and a low coefficient of thermal expansion between room temperature and its Curie temperature of 320°C. It also reported that the alloy has sufficient oxidation resistance so it may be possible to use it uncoated to temperatures approaching 675°C. The selection of the alloy by engine producers is described and the reasons for selecting are noted to be different from the original design criteria.


Author(s):  
Youry A. Nozhnitsky ◽  
Youlia A. Fedina ◽  
Anatoly D. Rekin ◽  
Nickolai I. Petrov

For years of time there have been conducted the investigations of gas-turbine engine parts made of carbon-carbon and ceramic materials. This paper presents mainly the results of works done to create engine components of ceramic materials. There are given the investigation results on development of equipment and methods intended for use in determining the characteristics of heat-resistant non-metallic materials under ultra high temperature conditions. The unique tooling is developed to be used for conducting mechanical tests in different conditions (vacuum, protective medium, air) at temperatures up to 2200°C. There are considered three possible fields of application of ceramic materials, that are, turbine (1), combustion chamber and other stator components operating at high temperatures (2), bearings (3). Different ceramic elements are designed and manufactured, their structural strength is investigated in the laboratory faculties and also as part of engine gas generators.


Author(s):  
Michael P. Enright ◽  
R. Craig McClung ◽  
Luc Huyse

Rare anomalies may be introduced during the metallurgical or manufacturing processes that may lead to uncontained failures of aircraft gas turbine engines. The risk of fracture associated with these anomalies can be quantified using a probabilistic fracture mechanics approach. In this paper, a general probabilistic framework is presented for risk assessment of gas turbine engine components subjected to either inherent or induced material anomalies. A summary of efficient computational methods that are applicable to this problem is also provided.


Sign in / Sign up

Export Citation Format

Share Document