scholarly journals Combustion System Performance and Field Test Results of the MS7001F Gas Turbine

Author(s):  
James P. Claeys ◽  
Kevin M. Elward ◽  
Warren J. Mick ◽  
Richard A. Symonds

This paper presents the results of the combustion system test of the MS7001F installed at the Virginia Power Chesterfield station. Tests of water and steam injection for NOx control were performed. Results of emissions, combustor dynamics, and combustor hardware performance are presented. Emissions test results include NOx, CO, unburned hydrocarbons, VOC and formaldehyde levels. Combustor dynamic activity over a range of diluent injection ratios, and the performance of an actively cooled transition duct are also discussed. Combustion system mechanical performance is described following the first combustion system inspection.

1993 ◽  
Vol 115 (3) ◽  
pp. 537-546 ◽  
Author(s):  
J. P. Claeys ◽  
K. M. Elward ◽  
W. J. Mick ◽  
R. A. Symonds

This paper presents the results of the combustion system test of the MS7001F installed at the Virginia Power Chesterfield station. Tests of water and steam injection for NOx control were performed. Results of emissions, combustor dynamics, and combustor hardware performance are presented. Emissions test results include NOx, CO, unburned hydrocarbons, VOC, and formaldehyde levels. Combustor dynamic activity over a range of diluent injection ratios, and the performance of an actively cooled transition duct are also discussed. Combustion system mechanical performance is described following the first combustion system inspection.


Author(s):  
David O. Fitts ◽  
Richard A. Symonds ◽  
Edmond R. Western

This paper presents the results of emissions testing and combustion system dynamics testing of a “Quiet Combustor” equipped MS7001E gas turbine at the Midway Sunset Cogeneration Company in Fellows, California. Water injection is used to control NOx emissions to 25 ppmvd without selective catalytic reduction. Test results include NOx, CO, unburned hydrocarbons, VOC, and formaldehyde emissions levels, and combustor dynamic pressure levels. Combustion system hardware mechanical performance is described following the initial combustion system inspection.


Author(s):  
Kevin M. Elward ◽  
David A. Flodman ◽  
Richard A. Symonds

A recent field test has completed the qualification of the MS6001B combustion system for operation on gas fuel with steam injection for NOx control to 25 ppmvd. Recently, dry operation on gas fuel at 25 ppmvd has been achieved on the MS6001. To meet the immediate need for running at the 25 ppmvd NOx level, increased steam injection was investigated. Laboratory testing on a single MS6001 combustor indicated the potential for achieving NOx levels as low as 25 ppmvd through the use of steam injection. This paper describes the lab testing and the field test of the MS6001B, and includes data on emissions, steam flow requirements, and dynamic pressure levels. The MS6001B is now available at 25 ppmvd NOx with steam injection on gas wherever this level is required. This system provides an easy retrofit to those gas fired, steam injected units where installation of the dry 25 ppmvd NOx system is not immediately feasible.


1988 ◽  
Vol 110 (4) ◽  
pp. 677-685
Author(s):  
M. Gianola

For purposes of both final verification and optimization of TG 20 and TG 50 combustion systems, test programs have been carried out directly on full engines operating in the field, as well as in the test bench. These programs were carried out in two separate phases: the first one directed to determine the behavior at load by means of experimental data acquisition, including temperature distribution on the combustor exit plane for different burner arrangements, and the second one directed to optimize the ignition process and the acceleration sequence. This paper, after a brief description of the instrumentation used for each test, reports the most significant results burning both fuel oil and natural gas. Moreover, some peculiar operational problems are mentioned, along with their diagnosis and the corrections applied to the combustion system to solve them.


Author(s):  
Klaus Brun ◽  
Rainer Kurz

Field testing of gas turbine compressor packages requires the accurate determination of efficiency, capacity, head, power and fuel flow in sometimes less than ideal working environments. Nonetheless, field test results have significant implication for the compressor and gas turbine manufacturers and their customers. Economic considerations demand that the performance and efficiency of an installation are verified to assure a project’s return on investment. Thus, for the compressor and gas turbine manufacturers, as well as for the end-user, an accurate determination of the field performance is of vital interest. This paper describes an analytic method to predict the measurement uncertainty and, thus, the accuracy, of field test results for gas turbine driven compressors. Namely, a method is presented which can be employed to verify the validity of field test performance results. The equations governing the compressor and gas turbine performance uncertainties are rigorously derived and results are numerically compared to actual field test data. Typical field test measurement uncertainties are presented for different sets of instrumentation. Test parameters that correlate to the most significant influence on the performance uncertainties are identified and suggestions are provided on how to minimize their measurement errors. The effect of different equations of state on the calculated performance is also discussed. Results show that compressor efficiency uncertainties can be unacceptably high when some basic rules for accurate testing are violated. However, by following some simple measurement rules and maintaining commonality of the gas equations of state, the overall compressor package performance measurement uncertainty can be limited and meaningful results can be achieved.


1980 ◽  
Author(s):  
P. P. Singh ◽  
A. Cohn ◽  
P. W. Pillsbury ◽  
G. W. Bauserman ◽  
P. R. Mulik ◽  
...  

Combustion tests on over twelve types of coal derived liquid fuels from the EDS, H-coal, SRC-I and SRC-II processes and three shale oil fuels have been conducted in gas turbine type combustors. Emission measurements were made of Nox, smoke, CO, and unburned hydrocarbons. Combustor wall temperature profiles were measured. The results are correlated with the fuel properties-percent nitrogen, hydrogen and aromaticity. This part of the paper discusses the fuels used in subscale combustion tests along with the test results. A companion paper (Part II) describes the results of full-scale combustor tests and a long term corrosion/deposition test.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Hiroyuki Ichikawa ◽  
Youichiro Ohkubo ◽  
...  

A low emission combustor, which uses a prevaporization-premixing lean combustion system for the 100 kW automotive ceramic gas turbine (CGT), has been subjected to performance tests. Now a second combustor prototype (PPL-2), which incorporates improvements intended to overcome a flashback problem observed in an initial combustor prototype (PPL-1), is tested. The PPL-2 has been designed and built, so that it will substantially expand the stable combustion range. The improvement is accomplished by increasing the air distribution ratio in the lean combustion region to avoid flashback, providing a uniform flow velocity through the throat area and also by diluting the boundary layer so as to suppress flashback. Test results of the PPL-2 combustor show that it expands the flashback limit without affecting the blow out limit and is able to cover the stable combustion range need for the 100kW CGT.


Author(s):  
Waseem Nazeer ◽  
Kenneth Smith ◽  
Patrick Sheppard ◽  
Robert Cheng ◽  
David Littlejohn

The continued development of a low swirl injector for ultra-low NOx gas turbine applications is described. An injector prototype for natural gas operation has been designed, fabricated and tested. The target application is an annular gas turbine combustion system requiring twelve injectors. High pressure rig test results for a single injector prototype are presented. On natural gas, ultra-low NOx emissions were achieved along with low CO. A turndown of approximately 100°F in flame temperature was possible before CO emissions increased significantly. Subsequently, a set of injectors was evaluated at atmospheric pressure using a production annular combustor. Rig testing again demonstrated the ultra-low NOx capability of the injectors on natural gas. An engine test of the injectors will be required to establish the transient performance of the combustion system and to assess any combustor pressure oscillation issues.


Author(s):  
Rainer Kurz ◽  
Klaus Brun

Field testing of gas turbine or electric motor driven compressor packages requires the accurate determination of efficiency, capacity, head, or power consumption in sometimes less than ideal working environments. Nonetheless, field test results have significant implication for the compressor and gas turbine manufacturers and their customers. Economic considerations demand that the performance and efficiency of an installation are verified to assure the return on investment for the project. Thus, for the compressor and gas turbine manufacturers, as well as for the end-user, an accurate determination of the field performance is of vital interest. This paper discusses a method to determine the measurement uncertainty and, thus, the accuracy, of test results under the typical constraints of a site performance test, for compressors capable of variable speed operation. Namely, a method is presented which can be employed to verify the validity of field test performance results. Results are compared with actual field test results, using redundant methods. Typical field test measurement uncertainties are presented for different sets of instrumentation. The effect of different equations of state on the calculated performance is also discussed. Test parameters that correlate to the most significant influence on the performance uncertainties are identified and suggestions are provided on how to minimize their measurement errors. Results show that compressor efficiency uncertainties can be unacceptably high when some basic rules for accurate testing are violated. However, by following some simple measurement rules and maintaining commonality of the gas equations of state, the overall compressor package performance measurement uncertainty can be limited and meaningful results can be achieved.


2000 ◽  
Vol 123 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. Brun ◽  
R. Kurz

Field testing of gas turbine compressor packages requires the accurate determination of efficiency, capacity, head, power and fuel flow in sometimes less than ideal working environments. Nonetheless, field test results have significant implication for the compressor and gas turbine manufacturers and their customers. Economic considerations demand that the performance and efficiency of an installation are verified to assure a project?s return on investment. Thus, for the compressor and gas turbine manufacturers, as well as for the end-user, an accurate determination of the field performance is of vital interest. This paper describes an analytic method to predict the measurement uncertainty and, thus, the accuracy, of field test results for gas turbine driven compressors. Namely, a method is presented which can be employed to verify the validity of field test performance results. The equations governing the compressor and gas turbine performance uncertainties are rigorously derived and results are numerically compared to actual field test data. Typical field test measurement uncertainties are presented for different sets of instrumentation. Test parameters that correlate to the most significant influence on the performance uncertainties are identified and suggestions are provided on how to minimize their measurement errors. The effect of different equations of state on the calculated performance is also discussed. Results show that compressor efficiency uncertainties can be unacceptably high when some basic rules for accurate testing are violated. However, by following some simple measurement rules and maintaining commonality of the gas equations of state, the overall compressor package performance measurement uncertainty can be limited and meaningful results can be achieved.


Sign in / Sign up

Export Citation Format

Share Document