scholarly journals Gas Turbine Inlet Air Treatment: A New Technology

Author(s):  
David W. Donle ◽  
Robert C. Kiefer ◽  
Thomas C. Wright ◽  
Ugo A. Bertolami ◽  
Denis G. Hill

This paper describes the development, application, and performance verification of a new patented technology for cleaning and cooling combustion air to a gas turbine. A two (2) year in-depth research program at Dow Chemical Company in Freeport, Texas resulted in the development of this technology. At the conclusion of the research and development program, full-scale application of the hardware was made on a 100 MW combined cycle gas turbine, and its performance monitored for two (2) years. Application of the new technology resulted in increased power output, higher reliability, NOx emission reduction, reduced maintenance costs, and higher total system efficiency. Since the new technology has produced very large cost savings, Dow is using the new technology on three new combined cycle machines currently being installed, and further is exploring conversion of existing combined cycle gas turbines to this new technology.

Author(s):  
Satoshi Hada ◽  
Masanori Yuri ◽  
Junichiro Masada ◽  
Eisaku Ito ◽  
Keizo Tsukagoshi

MHI recently developed a 1600°C class J-type gas turbine, utilizing some of the technologies developed in the National Project to promote the development of component technology for the next generation 1700°C class gas turbine. This new frame is expected to achieve higher combined cycle efficiency and will contribute to reduce CO2 emissions. The target combined cycle efficiency of the J type gas turbine will be above 61.5% (gross, ISO standard condition, LHV) and the 1on1 combined cycle output will reach 460MW for 60Hz engine and 670MW for 50Hz engine. This new engine incorporates: 1) A high pressure ratio compressor based on the advanced M501H compressor, which was verified during the M501H development in 1999 and 2001. 2) Steam cooled combustor, which has accumulated extensive experience in the MHI G engine (> 1,356,000 actual operating hours). 3) State-of-art turbine designs developed through the 1700°C gas turbine component technology development program in Japanese National Project for high temperature components. This paper discusses the technical features and the updated status of the J-type gas turbine, especially the operating condition of the J-type gas turbine in the MHI demonstration plant, T-Point. The trial operation of the first M501J gas turbine was started at T-point in February 2011 on schedule, and major milestones of the trial operation have been met. After the trial operation, the first commercial operation has taken place as scheduled under a predominantly Daily-Start-and-Stop (DSS) mode. Afterward, MHI performed the major inspection in October 2011 in order to check the mechanical condition, and confirmed that the hot parts and other parts were in sound condition.


Author(s):  
Erwin Zauner ◽  
Yau-Pin Chyou ◽  
Frederic Walraven ◽  
Rolf Althaus

Power generation in gas turbines is facing three main challenges today: • Low pollution prescribed by legal requirements. • High efficiency to obtain low operating cost and low CO2 emissions. • High specific power output to obtain low product and installation cost. Unfortunately, some of these requirements are contradictory: high efficiency and specific power force the development towards higher temperatures and pressures which increase NOx emissions and intensify the cooling and material strength problems. A breakthrough can be achieved by applying an energy exchanger as a topping stage. Inherent advantages are the self-cooled cell-rotor which can be exposed to much higher gas temperature than a steady-flow turbine and a very short residence time at peak temperature which keeps NOx emissions under control. The basic idea has been proposed long time ago. Fundamental research has now led to a new energy exchanger concept. Key issues include symmetric pressure-wave processes, partial suppression of flow separation and fluid mixing, as well as quick afterburning in premixed mode. The concept has been proven in a laboratory-scale engine with very promising results. The application of an energy exchanger as a topping stage onto existing gas turbines would increase the efficiency by 17% (relative) and the power by 25%. Since the temperature level in the turbine remains unchanged, the performance improvement can also be fully utilized in combined cycle applications. This process indicates great potentials for developing advanced gas turbine systems as well as for retrofitting existing ones.


Author(s):  
Christoph Schneider ◽  
Vladimir Navrotsky ◽  
Prith Harasgama

ABB has approximately 200 GT11N and GT11D type gas turbines currently operating in simple cycle and combined cycle power plants. Most of these machines are fairly mature with many approaching the end of their economic life. In order that the power producer may continue to operate a fleet with improved performance, Advanced Air Cooling Technology and Advanced Turbine Aerodynamics have been utilized to uprate these engines with the implementation of a completely new turbine module. The objective of the uprating program was to implement the advanced aero/cooling technology into a complete new turbine module with: • Improved power output for the gas turbine • Increase the GT cycle efficiency • Maintain or improve the gas turbine RAM (Reliability, Availability & Maintainability) • Reduce the Cost of Electricity • Maintain or reduce the emissions of the gas turbine The GT11NM gas turbine has been developed based on the GT11N which has been in operation since 1987 and Midland Cogeneration Venture (MCV-Midland, Michigan) was chosen to demonstrate the uprated GT11NM. The upate/retrofit of the GT11N engine was conducted in May/June 1997 and the resulting gas turbine - GT11NM has met and exceeded the performance goals set at the onset of the development program. The next sections detail the main changes to the turbine and the resulting performance improvements as established with the demonstration at Midland, Michigan.


Author(s):  
Jaya Ganjikunta

Market demands such as generating power at lower cost, increasing reliability, providing fuel flexibility, increasing efficiency and reducing emissions have renewed the interest in Integrated Gasification Combined Cycle (IGCC) plants in the Indian refinery segment. This technology typically uses coal or petroleum coke (petcoke) gasification and gas turbine based combined cycle systems as it offers potential advantages in reducing emissions and producing low cost electricity. Gasification of coal typically produces syngas which is a mixture of Hydrogen (H) and Carbon Monoxide (CO). Present state of gas turbine technology facilitates burning of low calorific fuels such as syngas and gas turbine is the heart of power block in IGCC. Selecting a suitable gas turbine for syngas fired power plant application and optimization in integration can offer the purchaser savings in initial cost by avoiding oversizing as well as reduction in operating cost through better efficiency. This paper discusses the following aspects of syngas turbine IGCC power plant: • Considerations in design and engineering approach • Review of technologies in syngas fired gas turbines • Design differences of syngas turbines with respect to natural gas fired turbines • Gas turbine integration with gasifier, associated syngas system design and materials • Syngas safety, HAZOP and Hazardous area classification • Retrofitting of existing gas turbines suitable for syngas firing • Project execution and coordination at various phases of a project This paper is based on the experience gained in the recently executed syngas fired gas turbine based captive power plant and IGCC plant. This experience would be useful for gas turbine technology selection, integration of gas turbine in to IGCC, estimating engineering efforts, cost savings, cycle time reduction, retrofits and lowering future syngas based power plant project risks.


Author(s):  
R. W. Jones ◽  
A. C. Shoults

This paper presents details of three large gas turbine installations in the Freeport, Texas, power plants of the Dow Chemical Company. The general plant layout, integration of useful outputs, economic factors leading to the selection of these units, and experiences during startup and operation will be reviewed. All three units operate with supercharging fan, evaporative cooler, and static excitation. Two of the installations are nearly identical 32,000-kw gas turbines operating in a combined cycle with a supplementary fired 1,500,000-lb/hr boiler and a 50,000-kw noncondensing steam turbine. The other installation is a 43,000-kw gas turbine and a 20,000-kw starter-helper steam turbine on the same shaft. The gas turbine exhaust is used to supply heated feedwater for four existing boilers.


Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Combined cycle gas turbine plants are built and operated with higher availability, reliability, and performance than simple cycle in order to help provide the customer with capabilities to generate operating revenues and reduce fuel costs while enhancing dispatch competitiveness. The availability of a power plant can be improved by increasing the reliability of individual assets through maintenance enhancement and performance degradation recovery through remote efficiency monitoring to provide timely corrective recommendations. This paper presents a comprehensive system and methodology to pursue this purpose by using instrumented data to automate performance modeling for real-time monitoring and anomaly detection of combined cycle gas turbine power plants. Through thermodynamic performance modeling of main assets in a power plant such as gas turbines, steam turbines, heat recovery steam generators, condensers and other auxiliaries, the system provides an intelligent platform and methodology to drive customer-specific, asset-driven performance improvements, mitigate outage risks, rationalize operational patterns, and enhance maintenance schedules and service offerings at total plant level via taking appropriate proactive actions. In addition, the paper presents the components in the automated remote monitoring system, including data instrumentation, performance modeling methodology, operational anomaly detection, and component-based degradation assessment. As demonstrated in two examples, this remote performance monitoring of a combined cycle power plant aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive values for customers including shortening outage downtime, lowering operating fuel cost and increasing customer power sales and life cycle value of the power plant.


Author(s):  
A. K. Anand ◽  
C. S. Cook ◽  
J. C. Corman ◽  
A. R. Smith

The application of gas turbine technology to IGCC systems requires careful consideration of the degree and type of integration used during the system design phase. Although gas turbines provide the primary output and efficiency gains for IGCC systems, as compared with conventional coal fired power generation systems, they are commercially available only in specific size ranges. Therefore, it is up to the IGCC system designer to optimize the IGCC power plant within the required output, efficiency and site conditions by selecting the system configuration carefully, particularly for air separation unit (ASU) integration incorporated with oxygen blown gasification systems. An IGCC system, based on a generic, entrained flow, oxygen blown gasification system and a GE STAG 109FA combined cycle has been evaluated with varying degrees of ASU integration, two fuel equivalent heating values and two gas turbine firing temperatures to provide net plant output and efficiency results. The data presented illustrate the system flexibility afforded by variation of ASU integration and the potential performance gains available through the continued use of gas turbine advances. Emphasis is place on system design choices which favor either low initial investment cost or low operating cost for a given IGCC system output.


1996 ◽  
Vol 118 (4) ◽  
pp. 732-736 ◽  
Author(s):  
A. K. Anand ◽  
C. S. Cook ◽  
J. C. Corman ◽  
A. R. Smith

The application of gas turbine technology to IGCC systems requires careful consideration of the degree and type of integration used during the system design phase. Although gas turbines provide the primary output and efficiency gains for IGCC systems, as compared with conventional coal-fired power generation systems, they are commercially available only in specific size ranges. Therefore, it is up to the IGCC system designer to optimize the IGCC power plant within the required output, efficiency, and site conditions by selecting the system configuration carefully, particularly for air separation unit (ASU) integration incorporated with oxygen blown gasification systems. An IGCC system, based on a generic, entrained flow, oxygen blown gasification system and a GE STAG 109FA combined cycle has been evaluated with varying degrees of ASU integration, two fuel equivalent heating values and two gas turbine firing temperatures to provide net plant output and efficiency results. The data presented illustrate the system flexibility afforded by variation of ASU integration and the potential performance gains available through the continued use of gas turbine advances. Emphasis is placed on system design choices that favor either low initial investment cost or low operating cost for a given IGCC system output.


2021 ◽  
Author(s):  
Jamie Lim ◽  
Christopher A. Perullo ◽  
Joe Milton ◽  
Rachel Whitacre ◽  
Chris Jackson ◽  
...  

Abstract EPRI has been developing a digital twin of simple and combined cycle gas turbines over the last 5+ years to provide owners and operators with improved capabilities that typically reside in the expert domain of OEMs and 3rd party service providers. The digital twin is a digital model, a physics-based representation of the actual asset. The model is thermodynamic and is created with the intent to support 5 M&D areas: • Integrate with existing M&D tools such as advanced pattern recognition (APR) • Power plant performance prediction and trending such as day, week, and month ahead performance prediction for capacity and generation planning • Health Monitoring and Fault Diagnostics to support asset management with additional health scores and virtual instrumentation enabled by the digital twin model • Monitoring and prediction of both base and part-load performance. Many gas turbine tools have been simplified to work only at full load conditions. To be useful and to improve utilization of collected data, part-load conditions should also be considered. • Outage and repair impacts, including “what-if” capability to understand and quantify potential root causes of less than expected performance improvement or recovery after outage and repairs. This paper presents current progress in creating an EPRI Digital Twin applicable to gas turbines. The formulation, methodology, and real-world use cases are presented. To date, digital twins have been created and tested for both E and F class frames. This paper describes the process of generating closed-form equations capable of transforming existing, measured historian data into the health parameters and virtual sensors needed to better track unit health and monitor faulted performance. These equations encapsulate the digital twin physical model and provide end-users with a methodology to calibrate to their specific unit and efficiently use their choice of monitoring software. Tests have been performed using operator data and have shown good accuracy at detecting anomalous operation and predicting week ahead performance with excellent accuracy. Post-outage impact analysis is also assessed. Real-world application cases for the digital twin are also presented. Examples include using the digital twin to identify causes of post-outage emissions and performance issues, expected impact of degradation and fault conditions, and simulating improvements to operation through part repair and upgrades.


Author(s):  
R. Singh ◽  
M. S. Baker

Heavy fuel oil is of interest for firing in utility gas turbine and combined cycle plant, particularly in the developing economies of Asia and Latin America. There are few detailed studies published, which justify in commercial terms the use of heavy fuels in utility gas turbine plant or indicate the scenarios when this should be considered. Whilst this technology/fuel combination is mature and can be considered proven, awareness of the option and the technical and commercial implications is not widespread. This paper outlines the technical and commercial implications of firing heavy fuels in open cycle peaking and base load combined cycle plant. An economic comparison is made with the alternative fuel and technology options. It is demonstrated that firing heavy fuels in base load combined cycle plant can yield significant cost savings compared to using alternative technologies and liquid fuels, provided the emissions limits are not restrictive.


Sign in / Sign up

Export Citation Format

Share Document