Plant Performance Monitoring and Diagnostics: Remote, Real-Time and Automation

Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Combined cycle gas turbine plants are built and operated with higher availability, reliability, and performance than simple cycle in order to help provide the customer with capabilities to generate operating revenues and reduce fuel costs while enhancing dispatch competitiveness. The availability of a power plant can be improved by increasing the reliability of individual assets through maintenance enhancement and performance degradation recovery through remote efficiency monitoring to provide timely corrective recommendations. This paper presents a comprehensive system and methodology to pursue this purpose by using instrumented data to automate performance modeling for real-time monitoring and anomaly detection of combined cycle gas turbine power plants. Through thermodynamic performance modeling of main assets in a power plant such as gas turbines, steam turbines, heat recovery steam generators, condensers and other auxiliaries, the system provides an intelligent platform and methodology to drive customer-specific, asset-driven performance improvements, mitigate outage risks, rationalize operational patterns, and enhance maintenance schedules and service offerings at total plant level via taking appropriate proactive actions. In addition, the paper presents the components in the automated remote monitoring system, including data instrumentation, performance modeling methodology, operational anomaly detection, and component-based degradation assessment. As demonstrated in two examples, this remote performance monitoring of a combined cycle power plant aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive values for customers including shortening outage downtime, lowering operating fuel cost and increasing customer power sales and life cycle value of the power plant.

Author(s):  
Xiaomo Jiang ◽  
Craig Foster

Gas turbine simple or combined cycle plants are built and operated with higher availability, reliability, and performance in order to provide the customer with sufficient operating revenues and reduced fuel costs meanwhile enhancing customer dispatch competitiveness. A tremendous amount of operational data is usually collected from the everyday operation of a power plant. It has become an increasingly important but challenging issue about how to turn this data into knowledge and further solutions via developing advanced state-of-the-art analytics. This paper presents an integrated system and methodology to pursue this purpose by automating multi-level, multi-paradigm, multi-facet performance monitoring and anomaly detection for heavy duty gas turbines. The system provides an intelligent platform to drive site-specific performance improvements, mitigate outage risk, rationalize operational pattern, and enhance maintenance schedule and service offerings via taking appropriate proactive actions. In addition, the paper also presents the components in the system, including data sensing, hardware, and operational anomaly detection, expertise proactive act of company, site specific degradation assessment, and water wash effectiveness monitoring and analytics. As demonstrated in two examples, this remote performance monitoring aims to improve equipment efficiency by converting data into knowledge and solutions in order to drive value for customers including lowering operating fuel cost and increasing customer power sales and life cycle value.


2002 ◽  
Vol 124 (4) ◽  
pp. 910-921 ◽  
Author(s):  
S. C. Gu¨len ◽  
P. R. Griffin ◽  
S. Paolucci

This paper describes the results of real-time, on-line performance monitoring of two gas turbines over a period of five months in 1997. A commercially available software system is installed to monitor, analyze and store measurements obtained from the plant’s distributed control system. The software is installed in a combined-cycle, cogeneration power plant, located in Massachusetts, USA, with two Frame 7EA gas turbines in Apr. 1997. Vendor’s information such as correction and part load performance curves are utilized to calculate expected engine performance and compare it with measurements. In addition to monitoring the general condition and performance of the gas turbines, user-specified financial data is used to determine schedules for compressor washing and inlet filter replacement by balancing the associated costs with lost revenue. All measurements and calculated information are stored in databases for real-time and historical trending and tabulating. The data is analyzed ex post facto to identify salient performance and maintenance issues.


Author(s):  
S. Can Gülen ◽  
Patrick R. Griffin ◽  
Sal Paolucci

This paper describes the results of real-time, on-line performance monitoring of two gas turbines over a period of five months in 1997. A commercially available software system is installed to monitor, analyze and store measurements obtained from the plant’s distributed control system. The software is installed in a combined-cycle, cogeneration power plant, located in Mass., USA, with two Frame 7EA gas turbines in April 1997. Vendor’s information such as correction and part load performance curves are utilized to calculate expected engine performance and compare it with measurements. In addition to monitoring the general condition and performance of the gas turbines, user-specified financial data is used to determine schedules for compressor washing and inlet filter replacement by balancing the associated costs with lost revenue. All measurements and calculated information are stored in databases for real-time and historical trending and tabulating. The data is analyzed ex post facto to identify salient performance and maintenance issues.


Author(s):  
B. Chudnovsky ◽  
L. Levin ◽  
A. Talanker ◽  
V. Mankovsky ◽  
A. Kunin

Diagnostics of large size combined-cycle power plant components (such as: Gas Turbine, HRSG, Steam Turbine and Condenser) plays a significant role in improving power plant performance, availability, reliability and maintenance scheduling. In order to prevent various faults in cycle operation and as a result a reliability reduction, special monitoring and diagnostic techniques is required, for engineering analysis and utility production management. In this sense an on-line supervision system has developed and implemented for 370 MW combined-cycle. The advanced diagnostic methodology is based on a comparison between actual and target conditions. The actual conditions are calculated using data set acquired continuously from the power plant acquisition system. The target conditions are calculated either as a defined actual best operation (Manufacturer heat balances) or by means of a physical model that reproduces boiler and plant performance at off-design. Both sets of data are then compared to find the reason of performance deviation and then used to monitor plant degradation, to support plant maintenance and to assist on-line troubleshooting. The performance calculation module provides a complete Gas Turbine, HRSG and Steam Turbine island heat balance and operating parameters. This paper describes a study where an on-line performance monitoring tool was employed for continuously evaluating power plant performance. The methodology developed and summarized herein has been successfully applied to large size 360–370 MW combined cycles based on GE and Siemens Gas Turbines, showing good capabilities in estimating the degradation of the main equipment during plant lifetime. Consequently, it is a useful tool for power plant operation and maintenance.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


Author(s):  
Edgar Vicente Torres González ◽  
Raúl Lugo Leyte ◽  
Martín Salazar Pereyra ◽  
Helen Denise Lugo Méndez ◽  
Miguel Toledo Velázquez ◽  
...  

In this paper is carried out a comparison between a gas turbine power plant and a combined cycle power plant through exergetic and environmental indices in order to determine performance and sustainability aspects of a gas turbine and combined cycle plant. First of all, an exergetic analysis of the gas turbine and the combined is carried out then the exergetic and environmental indices are calculated for the gas turbine (case A) and the combined cycle (case B). The exergetic indices are exergetic efficiency, waste exergy ratio, exergy destruction factor, recoverable exergy ratio, environmental effect factor and exergetic sustainability. Besides, the environmental indices are global warming, smog formation and acid rain indices. In the case A, the two gas turbines generate 278.4 MW; whereas 415.19 MW of electricity power is generated by the combined cycle (case B). The results show that exergetic sustainability index for cases A and B are 0.02888 and 0.1058 respectively. The steam turbine cycle improves the overall efficiency, as well as, the reviewed exergetic indexes. Besides, the environmental indices of the gas turbines (case A) are lower than the combined cycle environmental indices (case B), since the combustion gases are only generated in the combustion chamber.


Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


Author(s):  
Michael J. Roemer ◽  
Gregory J. Kacprzynski ◽  
Michael Schoeller ◽  
Ron Howe ◽  
Richard Friend

Improved test cell diagnostics capable of detecting and classifying engine mechanical and performance faults as well as instrumentation problems is critical to reducing engine operating and maintenance costs while optimizing test cell effectiveness. Proven anomaly detection and fault classification techniques utilizing engine Gas Path Analysis (GPA) and statistical/empirical models of structural and performance related engine areas can now be implemented for real-time and post-test diagnostic assessments. Integration and implementation of these proven technologies into existing USAF engine test cells presents a great opportunity to significantly improve existing engine test cell capabilities to better meet today’s challenges. A suite of advanced diagnostic and troubleshooting tools have recently been developed and implemented for gas turbine engine test cells as part of the Automated Jet Engine Test Strategy (AJETS) program. AJETS is an innovative USAF program for improving existing engine test cells by providing more efficient and advanced monitoring, diagnostic and troubleshooting capabilities. This paper describes the basic design features of the AJETS system; including the associated data network, sensor validation and anomaly detection/diagnostic software that was implemented in both a real-time and post-test analysis mode. These advanced design features of AJETS are currently being evaluated and advanced utilizing data from TF39 test cell installations at Travis AFB and Dover AFB.


Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


1981 ◽  
Vol 103 (4) ◽  
pp. 772-775 ◽  
Author(s):  
Akifumi Hori ◽  
Kazuo Takeya

A new reheat gas turbine system is being developed as a national project by the “Engineering Research Association for Advanced Gas Turbines” of Japan. The machine consists of two axial flow compressors, three turbines, intercooler, combustor and reheater. The pilot plant is expected to go into operation in 1982, and a prototype plant will be set up in 1984. The major objective of this reheat gas turbine is application to a combined cycle power plant, with LNG burning, and the final target of combined cycle thermal efficiency is to be 55 percent (LHV).


Sign in / Sign up

Export Citation Format

Share Document