Studies on Wake-Affected Heat Transfer Around the Circular Leading Edge of Blunt Body

Author(s):  
K. Funazaki

Detailed measurements are performed about time-averaged beat transfer distributions around the leading edge of a blunt body which is affected by incoming periodic wakes from the upstream moving bars. The blunt body is a test model of a front portion of a turbine blade in gas turbines and consists of a semicircular cylindrical leading edge and a flat plate afterbody. A wide range of the steady and unsteady flow conditions are adopted as for the Reynolds number based on the diameter of the leading edge and the bar-passing Strouhal number. The measured heat transfer distributions indicate that the wakes passing over the leading edge cause significant increase in beat transfer before the separation and the higher Strouhal number results in higher heat transfer. From this experiment, a correlation for the heat transfer enhancement around the leading edge due to the periodic wakes is deduced as a function of the Stanton number and it is reviewed by comparison with the other experimental works.

1996 ◽  
Vol 118 (3) ◽  
pp. 452-460 ◽  
Author(s):  
K. Funazaki

Detailed measurements are performed about time-averaged heat transfer distributions around the leading edge of a blunt body, which is affected by incoming periodic wakes from the upstream moving bars. The blunt body is a test model of a front portion of a turbine blade in gas turbines and consists of a semicircular cylindrical leading edge and a flat plate afterbody. A wide range of the steady and unsteady flow conditions are adopted as for the Reynolds number based on the diameter of the leading edge and the bar-passing Strouhal number. The measured heat transfer distributions indicate that the wakes passing over the leading edge cause a significant increase in heat transfer before the separation and the higher Strouhal number results in higher heat transfer. From this experiment, a correlation for the heat transfer enhancement around the leading edge due to the periodic wakes is deduced as a function of the Stanton number and it is reviewed by comparison with the other experimental works.


1984 ◽  
Vol 106 (1) ◽  
pp. 222-228 ◽  
Author(s):  
M. L. Marziale ◽  
R. E. Mayle

An experimental investigation was conducted to examine the effect of a periodic variation in the angle of attack on heat transfer at the leading edge of a gas turbine blade. A circular cylinder was used as a large-scale model of the leading edge region. The cylinder was placed in a wind tunnel and was oscillated rotationally about its axis. The incident flow Reynolds number and the Strouhal number of oscillation were chosen to model an actual turbine condition. Incident turbulence levels up to 4.9 percent were produced by grids placed upstream of the cylinder. The transfer rate was measured using a mass transfer technique and heat transfer rates inferred from the results. A direct comparison of the unsteady and steady results indicate that the effect is dependent on the Strouhal number, turbulence level, and the turbulence length scale, but that the largest observed effect was only a 10 percent augmentation at the nominal stagnation position.


1997 ◽  
Vol 119 (2) ◽  
pp. 292-301 ◽  
Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20 K. In this case, the air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine cannot be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperatures around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


Author(s):  
K. Funazaki ◽  
M. Yokota ◽  
S. Yamawaki

Detailed studies are conducted on film effectiveness of discrete cooling holes around the leading edge of a blunt body that is subjected to periodically incoming wakes as well as free-stream turbulence with various levels of intensity. The cooling holes have a configuration similar to that of typical turbine blades except for the spanwise inclination angle. Secondary air is heated so that the temperature difference between the mainstream and secondary air is about 20K. In this case, air density ratio of the mainstream and secondary air becomes less than unity, therefore the flow condition encountered in an actual aero-engine can not be simulated in terms of the density ratio. A spoke-wheel type wake generator is used in this study. In addition, three types of turbulence grids are used to elevate the free-stream turbulence intensity. We adopt three blowing ratios of the secondary air to the mainstream. For each of the blowing ratios, wall temperature around the surface of the test model are measured by thermocouples situated inside the model. The temperature is visualized using liquid crystals in order to obtain qualitative information of film effectiveness distribution.


Author(s):  
M. V. Pham ◽  
F. Plourde ◽  
S. K. Doan

Heat transfer enhancement is a subject of major concern in numerous fields of industry and research. Having received undivided attention over the years, it is still studied worldwide. Given the exponential growth of computing power, large-scale numerical simulations are growing steadily more realistic, and it is now possible to obtain accurate time-dependent solutions with far fewer preliminary assumptions about the problems. As a result, an increasingly wide range of physics is now open for exploration. More specifically, it is time to take full advantage of large eddy simulation technique so as to describe heat transfer in staggered parallel-plate flows. In fact, from simple theory through experimental results, it has been demonstrated that surface interruption enhances heat transfer. Staggered parallel-plate geometries are of great potential interest, and yet many numerical works dedicated to them have been tarnished by excessively simple assumptions. That is to say, numerical simulations have generally hypothesized lengthwise periodicity, even though flows are not periodic; moreover, the LES technique has not been employed with sufficient frequency. Actually, our primary objective is to analyze turbulent influence with regard to heat transfers in staggered parallel-plate fin geometries. In order to do so, we have developed a LES code, and numerical results are compared with regard to several grid mesh resolutions. We have focused mainly upon identification of turbulent structures and their role in heat transfer enhancement. Another key point involves the distinct roles of boundary restart and the vortex shedding mechanism on heat transfer and friction factor.


Author(s):  
J.-J. Hwang ◽  
C.-S. Cheng ◽  
Y.-P. Tsia

An experimental study has been performed to measure local heat transfer coefficients and static well pressure drops in leading-edge triangular ducts cooled by wall/impinged jets. Coolant provided by an array of equally spaced wall jets is aimed at the leading-edge apex and exits from the radial outlet. Detailed heat transfer coefficients are measured for the two walls forming the apex using transient liquid crystal technique. Secondary-flow structures are visualized to realize the mechanism of heat transfer enhancement by wall/impinged jets. Three right-triangular ducts of the same altitude and different apex angles of β = 30 deg (Duct A), 45 deg (Duct B) and 60 deg (Duct C) are tested for various jet Reynolds numbers (3000≦Rej≦12600) and jet spacings (s/d = 3.0 and 6.0). Results show that an increase in Rej increases the heat transfer on both walls. Local heat transfer on both walls gradually decreases downstream due to the crossflow effect. At the same Rej, the Duct C has the highest wall-averaged heat transfer because of the highest jet center velocity as well as the smallest jet inclined angle. Moreover, the distribution of static pressure drop based on the local through flow rate in the present triangular duct is similar to that that of developing straight pipe flows. Average jet Nusselt numbers on the both walls have been correlated with jet Reynolds number for three different duct shapes.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sébastien Kunstmann ◽  
Jens von Wolfersdorf ◽  
Uwe Ruedel

An investigation was conducted to assess the thermal performance of W-shaped, 2W-shaped and 4W-shaped ribs in a rectangular channel. The aspect ratios (W/H) were 2:1, 4:1, and 8:1. The ribs were located on one channel wall. The rib height (e) was kept constant with a rib height-to-hydraulic diameter ratio (e/Dh) of 0.02, 0.03, and 0.06. The rib pitch-to-height ratio (P/e) was 10. The Reynolds numbers investigated (Re > 90 000) are typical for combustor liner cooling configurations of gas turbines. Local heat transfer coefficients using the transient thermochromic liquid crystal technique and overall pressure losses were measured. The rib configurations were investigated numerically to visualize the flow pattern in the channel and to support the understanding of the experimental data. The results show that the highest heat transfer enhancement is obtained by rib configurations with a rib section-to-channel height ratio (Wr/H) of 1:1. W-shaped ribs achieve the highest heat transfer enhancement levels in channels with an aspect ratio of 2:1, 2W-shaped ribs in channels with an aspect ratio of 4:1 and 4W-shaped ribs in channels with an aspect ratio of 8:1. Furthermore, the pressure loss increases with increasing complexity of the rib geometry and blockage ratio.


2001 ◽  
Author(s):  
J. Ward ◽  
M. de Oliveira ◽  
D. R. Garwood ◽  
R. A. Wallis

Abstract The desired mechanical properties of the nickel-based or titanium forgings used in gas turbines for aircraft and power generation applications can be controlled by varying the rate of cooling from the so-called solution temperature during an initial heat treatment process. The use of dilute air-water spray cooling of these forgings is a technique which can provide heat transfer rates lying between those associated with conventional oil quenching or convective air-cooling. Air assisted atomisation can result in fine sprays over a wide range of water flow rates and it has a further advantage in that the air “sweeps” the surface and hence helps to prevent the build up of deleterious vapour films at high surface temperatures. The paper presents experimental data for the heat transfer rates associated with the use of these sprays to cool surfaces from temperatures of approximately 800°C. Many forgings contain surface recesses, which can lead to build up or “pooling” of the water so that the effect of variations in surface geometry is also reported. Periodic interruption of the water flow is a technique which can be employed to provide additional control of the heat transfer rate, particularly at temperatures below 500°C so that data is also presented for pulsed sprays.


Author(s):  
J. E. Kingery ◽  
F. E. Ames

A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Markus Baumann ◽  
Christian Koch ◽  
Stephan Staudacher

Abstract Diabatic performance modeling is a prerequisite for engine condition monitoring based on nonsteady-state data points (e.g., Putz et al. 2017, “Jet Engine Gas Path Analysis Based on Takeoff Performance Snapshots,” ASME J. Eng. Gas Turbines Power, 139(11), p. 111201.). The importance of diabatic effects increases with decreasing engine size. Steady-state diabatic modeling of turbomachinery components is presented using nondimensional parameters derived from a dimensional analysis. The resulting heat transfer maps are approximated using the analytic solution for a pipe. Experimental identification of the maps requires the measurement of casing and gas path temperatures. This approach is demonstrated successfully using a small turboshaft engine as a test vehicle. A limited amount of measurements was needed to generate a steady-state heat transfer map which is valid for a wide range of operating points.


Sign in / Sign up

Export Citation Format

Share Document