scholarly journals Development of a Low-Emission Combustor for a 100-kW Automotive Ceramic Gas Turbine: II

Author(s):  
Hirotaka Kumakura ◽  
Masafumi Sasaki ◽  
Daishi Suzuki ◽  
Hiroyuki Ichikawa

Perfomance tests were conducted on a low-emission combustor which has a prevaporization-premixing lean combustion system and is designed for a 100 kW automotive ceramic gas turbine. The results of steady-state combustion tests performed at an inlet temperature of 1000–1200 K and pressure of 0.1–0.34 MPa indicate that the combustor would meet Japan’s emission standards for gasoline engine passenger cars without using an aftertreatment system. Flashback was suppressed by controlling the mixture velocity and air ratios. Strength tests conducted on rings and bars cut from the actual ceramic parts indicate that the combustor has nearly the same level of strength as standard test specimens.

1996 ◽  
Vol 118 (1) ◽  
pp. 167-172 ◽  
Author(s):  
H. Kumakura ◽  
M. Sasaki ◽  
D. Suzuki ◽  
H. Ichikawa

Performance tests were conducted on a low-emission combustor, which has a pre-vaporization–premixing lean combustion system and is designed for a 100 kW automotive ceramic gas turbine. The results of steady-state combustion tests performed at an inlet temperature of 1000–1200 K and pressure of 0.1–0.34 MPa indicate that the combustor would meet Japan’s emission standards for gasoline engine passenger cars without using an aftertreatment system. Flashback was suppressed by controlling the mixture velocity and air ratios. Strength tests conducted on rings and bars cut from the actual ceramic parts indicate that the combustor has nearly the same level of strength as standard test specimens.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Katsuhiko Sugiyama ◽  
Youichirou Ohkubo

A low emission combustor for a 100kW ceramic gas turbine, which is intended to meet Japanese emission standards for gasoline passenger cars, has been designed and subjected to initial performance tests. A prevaporization-premixing combustion system was chosen as the most suitable system for the combustor. The detailed combustor design, including the use of ceramic components and fuel injectors, was pursued taking into account the allowable engine dimensions for vehicle installation. In the initial performance tests conducted at a combustor inlet temperature of 773K, a low NOx level was obtained that satisfied the steady state target at this temperature level.


Author(s):  
Masafumi Sasaki ◽  
Hirotaka Kumakura ◽  
Daishi Suzuki ◽  
Hiroyuki Ichikawa ◽  
Youichiro Ohkubo ◽  
...  

A low emission combustor, which uses a prevaporization-premixing lean combustion system for the 100 kW automotive ceramic gas turbine (CGT), has been subjected to performance tests. Now a second combustor prototype (PPL-2), which incorporates improvements intended to overcome a flashback problem observed in an initial combustor prototype (PPL-1), is tested. The PPL-2 has been designed and built, so that it will substantially expand the stable combustion range. The improvement is accomplished by increasing the air distribution ratio in the lean combustion region to avoid flashback, providing a uniform flow velocity through the throat area and also by diluting the boundary layer so as to suppress flashback. Test results of the PPL-2 combustor show that it expands the flashback limit without affecting the blow out limit and is able to cover the stable combustion range need for the 100kW CGT.


Author(s):  
Youichlrou Ohkubo ◽  
Yoshinorl Idota ◽  
Yoshihiro Nomura

Spray characteristics of liquid fuel air-assisted atomizers developed for a lean premixed-prevaporization combustor were evaluated under two kinds of conditions: in still air under non-evaporation conditions at atmospheric pressure and in a prevaporization-premixing tube under evaporation conditions with a running gas turbine. The non-evaporated mass fraction of fuel spray was measured using a phase Doppler particle analyzer in the prevaporization-premixing tube, in which the inlet temperature ranged from 873K to 1173K. The evaporation of the fuel spray in the tube is mainly controlled by its atomization and distribution. The NOx emission characteristics measured with a combustor test rig were evaluated with three-dimensional numerical simulations. A low non-evaporated mass fraction of less than 10% was effective in reducing the exhausted NOx from lean premixed-prevaporization combustion to about 1/6 times smaller than that from lean diffusion (spray) combustion. The flow patterns in the combustor are established by a swirl chamber in fuel-air preparation tube, and affect the flame stabilization of lean combustion.


Author(s):  
Ralph A. Dalla Betta ◽  
James C. Schlatter ◽  
Sarento G. Nickolas ◽  
Martin B. Cutrone ◽  
Kenneth W. Beebe ◽  
...  

The most effective technologies currently available for controlling NOx emissions from heavy-duty industrial gas turbines are either diluent injection in the combustor reaction zone, or lean premixed Dry Low NOx (DLN) combustion. For ultra low emissions requirements, these must be combined with selective catalytic reduction (SCR) DeNOx systems in the gas turbine exhaust. An alternative technology for achieving comparable emissions levels with the potential for lower capital investment and operating cost is catalytic combustion of lean premixed fuel and air within the gas turbine. The design of a catalytic combustion system using natural gas fuel has been prepared for the GE model MS9OOIE gas turbine. This machine has a turbine inlet temperature to the first rotating stage of over 1100°C and produces approximately 105 MW electrical output in simple cycle operation. The 508 mm diameter catalytic combustor designed for this gas turbine was operated at full-scale conditions in tests conducted in 1992 and 1994. The combustor was operated for twelve hours during the 1994 test and demonstrated very low NOx emissions from the catalytic reactor. The total exhaust NOx level was approximately 12–15 ppmv and was produced almost entirely in the preburner ahead of the reactor. A small quantity of steam injected into the preburner reduced the NOx emissions to 5–6 ppmv. Development of the combustion system has continued with the objectives of reducing CO and UHC emissions, understanding the parameters affecting reactor stability and spatial non-uniformities which were observed at low inlet temperature, and improving the structural integrity of the reactor system to a level required for commercial operation of gas turbines. Design modifications were completed and combustion hardware was fabricated for additional full-scale tests of the catalytic combustion system in March 1995 and January 1996. This paper presents a discussion of the combustor design, the catalytic reactor design and the results of full-scale testing of the improved combustor at MS9OOIE cycle conditions in the March 1995 and January 1996 tests. Major improvements in performance were achieved with CO and UHC emissions of 10 ppmv and 0 ppmv at base load conditions. This ongoing program will lead to two additional full-scale combustion system tests in 1996. The results of these tests will be available for discussion at the June 1996 Conference in Birmingham.


Author(s):  
G. J. Kelsall ◽  
M. A. Smith ◽  
H. Todd ◽  
M. J. Burrows

Advanced coal based power generation systems such as the British Coal Topping Cycle offer the potential for high efficiency electricity generation with minimum environmental impact. An important component of the Topping Cycle programme is the development of a gas turbine combustion system to burn low calorific value (3.5–4.0 MJ/m3 wet gross) coal derived fuel gas, at a turbine inlet temperature of 1260°C, with minimum pollutant emissions. The paper gives an overview of the British Coal approach to the provision of a gas turbine combustion system for the British Coal Topping Cycle, which includes both experimental and modelling aspects. The first phase of this programme is described, including the design and operation of a low-NOx turbine combustor, operating at an outlet temperature of 1360°C and burning a synthetic low calorific value (LCV) fuel gas, containing 0 to 1000 ppmv of ammonia. Test results up to a pressure of 8 bar are presented and the requirements for further combustor development outlined.


Author(s):  
H. Matsuzaki ◽  
I. Fukue ◽  
S. Mandai ◽  
S. Tanimura ◽  
M. Inada

This paper describes the cold flow tests and low pressure combustion tests which were conducted for the development of a 1500°C-class low NOx combustion system. In the cold flow tests, the effect of vane angle and the momentum ratio of fuel to air flow on mixing characteristics inside the premixing nozzles was investigated. The stabilization of the flow field inside the combustor was confirmed by measurement of the axial velocity distribution and observations by using a tuft of soft thread. Combustion characteristics in terms of emissions and stability were investigated initially by low pressure combustion tests, and the gas temperature distribution inside the combustor was measured. NOx emissions for a 1500°C-class gas turbine as low as 50ppm at 15% oxygen at design pressure were demonstrated.


Author(s):  
Petter Egil Ro̸kke ◽  
Johan E. Hustad ◽  
Nils A. Ro̸kke ◽  
Ole Birger Svendsgaard

A challenging issue in the gas turbine industry is to develop a practical dual fuel (DF), dry low emission (DLE) combustion system. Especially for the onshore-based power generation systems, and liquid DLE for aeroderivative engines used for marine propulsion. A novel mid-size (3MW) gas turbine is being developed mainly targeted for marine propulsion, where a dual fuel DLE combustion system aiming at single digit NOx emission figures has been explored. As a part of this development, the present technology available from different gas turbine manufacturers has been surveyed. Status of the different techniques applied in dual fuel DLE combustors today and their achievements are presented, including the available information on fuel injectors, cooling schemes, combustion air distribution, noise control and combustor performance. The techniques utilized and explained are such as flame temperature control (water/steam injection), staged combustion, lean premixing and lean prevaporized premixing, rich-quench-lean-burning (RQLB) and catalytic combustion. These are also documented for the different concepts commercially available, describing both advantages and drawbacks. Conclusions are made towards the dominating trends for the different parameters mentioned above, and how they affect the final combustor design. A survey of the dominating parameters for low emission combustion systems is presented.


Sign in / Sign up

Export Citation Format

Share Document