scholarly journals Compressor Washing Maintains Plant Performance and Reduces Cost of Energy Production

Author(s):  
Jean-Pierre Stalder ◽  
Peter van Oosten

This paper reports about the results of a field test conducted over a period of 8000 operating hours on the effect of combined on line and off line compressor washing on a 66 MW gas turbine operating in a combined cycle plant at UNA’s Lage Weide 5 power plant in Utrecht. Observations have shown a sustained high output level close to the nominal guaranteed rating, despite difficult atmospheric conditions. Investigations on the correlations between fouling gradients in the compressor and atmospheric conditions are also presented. The evaluation of the results demonstrate the importance of implementing an optimised regime of on line and off line washing in the preventive turbine maintenance program. It will improve the plant profitability by reducing the costs of energy production.

Author(s):  
Thomas K. Kirkpatrick ◽  
Bernard J. Pastorik ◽  
Wesley M. Newland

Since its publication in 1996, ASME PTC 46 Performance Test Code on Overall Plant Performance has established itself as the premier test code for conducting overall plant performance within the power industry, especially for combined cycle power plants. The current text within ASME PTC 46, which is currently under revision by the ASME PTC 46 Committee, describes in Section 5.3.4 Specified Measured Net Power that “This test is conducted for a combined cycle power plant with duct firing or other form of power augmentation, such as steam or water injection when used for that purpose.” Further, the only example problem for a combined cycle with duct firing is provided in Appendix B of the code utilizing the Specified Measured Net Power Test Method. Though the text and example are correctly presented within the code, it resulted in misinterpretation within the industry that the only correct way to test a combined cycle plant with duct firing was to conduct a Specified Measured Net Power Test. Though the Specified Measured Net Power Test Method is an acceptable and accurate method in determining the performance of a combined cycle plant with duct firing in operation, it lends to being inflexible to the weather conditions for the plant operation. When the weather is too cold, the exhaust energy from the combustion turbines may be at such a magnitude as to not allow the duct burners to be fired due to limitations within the heat recovery steam generator and steam turbine systems to take the load, thus limiting the plant testing to take place when the weather is warm enough to allow the plant to be operated with duct firing. The opposite condition can also exist where the ambient conditions are too hot so that the duct burner capacity is unable to achieve the specified measured net power allowing the test to be conducted. The limitations stated herein are the reasons that an alternative approach with more flexibility is necessary. This paper will present an alternative approach referred to as the Fixed Duct Burner Heat Input Test Method to testing combined cycle plants where the duct burner heat input (Fuel Flow) is held fixed while the plant net power and heat rate are left to float with ambient conditions. Corrections for both power and heat rate will be developed for ambient conditions per ASME PTC 46 guidelines. This paper will further present a comparison between the Specified Measured Net Power Test Method and the Fixed Duct Burner Heat Input Test Method in the areas of the flexibility of the methods for various ambient conditions, and the method uncertainty associated with each method’s ability to correct to reference conditions.


Author(s):  
Helmer Andersen

Fuel is by far the largest expenditure for energy production for most power plants. New tools for on-line performance monitoring have been developed for reducing fuel consumption while at the same time optimizing operational performance. This paper highlights a case study where an online performance-monitoring tool was employed to continually evaluate plant performance at the Kalaeloa Combined Cycle Power Plant. Justification for investment in performance monitoring tools is presented. Additionally the influence of various loss parameters on the cycle performance is analyzed with examples. Thus, demonstrating the potential savings achieved by identifying and correcting the losses typically occurring from deficiencies in high impact component performance.


Author(s):  
Ranga Nadig

Abstract Power plants operating in cyclic mode, standby mode or as back up to solar and wind generating assets are required to come on line on short notice. Simple cycle power plants employing gas turbines are being designed to come on line within 10–15 minutes. Combined cycle plants with heat recovery steam generators and steam turbines take longer to come on line. The components of a combined cycle plant, such as the HRSG, steam turbine, steam surface condenser, cooling tower, circulating water pumps and condensate pumps, are being designed to operate in unison and come on line expeditiously. Major components, such as the HRSG, steam turbine and associated steam piping, dictate how fast the combined cycle plant can come on line. The temperature ramp rates are the prime drivers that govern the startup time. Steam surface condenser and associated auxiliaries impact the startup time to a lesser extent. This paper discusses the design features that could be included in the steam surface condenser and associated auxiliaries to permit quick startup and reliable operation. Additional design features that could be implemented to withstand the demanding needs of cyclic operation are highlighted.


Author(s):  
A. Zwebek ◽  
P. Pilidis

This paper describes the effects of degradation of the main gas path components of the gas turbine topping cycle on the Combined Cycle Gas Turbine (CCGT) plant performance. Firstly the component degradation effects on the gas turbine performance as an independent unit are examined. It is then shown how this degradation is reflected on a steam turbine plant of the CCGT and on the complete Combined Cycle plant. TURBOMATCH, the gas turbine performance code of Cranfield University was used to predict the effects of degraded gas path components of the gas turbine have on its performance as a whole plant. To simulate the steam (Bottoming) cycle, another Fortran code was developed. Both codes were used together to form a complete software system that can predict the CCGT plant design point, off-design, and deteriorated (due to component degradation) performances. The results show that the overall output is very sensitive to many types of degradation, specially in the turbine of the gas turbine. Also shown is the effect on gas turbine exhaust conditions and how this affects the steam cycle.


Author(s):  
Andrea Passarella ◽  
Gianmario L. Arnulfi

As gas turbine exhaust gases leave the turbine at high temperature, heat recovery is often carried out in a combined heat-and-power system or in the steam section of a combined-cycle plant. An interesting alternative is a mirror cycle, which involves coupling together a direct Brayton top cycle and an inverted Brayton bottom cycle; this results in significantly higher power output and efficiency, though at the expense of added complexity. The research illustrated in the present paper was based on two in-house codes and aimed to analyze different plant configurations, one of which was a heat recovery (regenerative) top cycle with the heat exchanger hot side located between the top and bottom cycle turbo-expanders. The authors call this configuration a distorting mirror, as the hot side may not be at atmospheric pressure. A parametric analysis was carried out in order to optimize plant performance vs. pressure levels. Simulation showed that, at the design point, very good performance is obtained: efficiency close to 0.50 with plant cost (per megawatt) about half vs. combined-cycle plants. An off-design analysis showed that the mirror plant is a little more sensitive to changes in load than a simple Brayton, single-shaft GT.


Author(s):  
S. Ghosh ◽  
S. De ◽  
S. Saha

This paper presents conceptual models of some novel GT-SOFC and GT-MCFC plants for power and cogeneration operating on gasified coal or natural gas. Simulated performance of the modeled plants in terms of energy efficiency, emission reduction, fuel energy savings (for cogeneration) with respect to separate reference plants for power generation and utility heat production is presented and analyzed. Influences of variations in some design and operating parameters on the plant performance are also reported in the paper. A study with a coal gasification combined cycle plant using SOFC upstream of GT suggests that such plants have the potential of delivering power at an overall efficiency level exceeding 50%. A similar plant delivering both power and utility heat can potentially save about 30% of fuel with respect to separate plants for power and heat. For a conceptualized natural gas fuelled GT-MCFC CHP plant, an electrical efficiency of more than 40% and fuel energy saving exceeding, 30% are achievable. Using a CO2 separator placed at fuel cell exhaust, CO2 can be trapped in a closed cycle. CO2 emission reduction as high as 60% is achievable for such plants.


Author(s):  
Michael McClintock ◽  
Kenneth L. Cramblitt

Monitoring thermal performance in the current generation of combined cycle power plants is frequently a challenge. The “lean” plant staff and organizational structure of the companies that own and operate these plants frequently does not allow the engineering resources to develop and maintain an effective program to monitor thermal performance. Additionally, in many combined cycle plants the highest priority is responding to market demands rather than maintaining peak efficiency. Finally, in many cases the plants are not designed with performance monitoring in mind, thus making it difficult to accurately measure commonly used indices of performance. This paper describes the performance monitoring program being established at a new combined cycle plant that is typical of many combined cycle plants built in the last five years. The plant is equipped with GE 7FA gas turbines and a GE reheat steam turbine. The program was implemented using a set of easy-to-use spreadsheets for the major plant components. The data for the calculation of indices of performance for the various components comes from the plant DCS system and the PI system (supplied by OSIsoft). In addition to the development of spreadsheets, testing procedures were developed to ensure consistent test results and plant personnel were trained to understand, use and maintain the spreadsheets and the information they produce.


Author(s):  
Anthony E. Butler ◽  
Jagadish Nanjappa

“Combined Turbine Equipment Performance” represents the combined performance of the Gas Turbine-Generator(s) and the Steam Turbine-Generator(s), while disregarding or holding the performance of the remaining equipment in the Power Plant at its design levels. The lack of established industry standards and methods addressing the manner in which combined turbine equipment performance should be determined has invited confusion and has created opportunities for technical errors to go undetected. This paper presents a method and the supporting theory by which the corrected performance of the turbine-generators within a combined cycle plant can be combined to gauge their combined performance levels for either contractual compliance or for diagnostic purposes. The Combined Turbine Equipment Performance methodology provided in this paper, allows the performance engineer to easily separate the performance contribution of each turbine generator from the overall plant performance. As such, this information becomes a powerful diagnostic tool in circumstances where a reconciliation of overall plant performance is desired. Individual (gas or steam) turbine performance can be determined by conducting a test in accordance with the respective test code (ASME PTC 22 or PTC 6.2). However, each of these test codes corrects the measured equipment performance to fundamentally different reference conditions. Where the gas turbine-generator measured performance is corrected primarily to ambient reference conditions, the steam turbine-generator measured performance is corrected to steam flows and other steam reference conditions. The simple mathematical addition of the corrected performance of each turbine ignores the well-known fact that the steam turbine-generator output in a combined cycle plant is impacted by the gas turbine exhaust conditions, in particular the gas turbine exhaust flow and temperature. The purpose of this paper is to provide a method for the determination of “Combined Turbine Equipment Performance”, review the supporting theory, highlight the assumptions, and develop useful transfer functions for some commonly used combined cycle plant configurations, and bound the uncertainty associated with the methodology.


2003 ◽  
Vol 125 (3) ◽  
pp. 651-657 ◽  
Author(s):  
A. Zwebek ◽  
P. Pilidis

This paper describes the effects of degradation of the main gas path components of the gas turbine topping cycle on the combined cycle gas turbine (CCGT) plant performance. First, the component degradation effects on the gas turbine performance as an independent unit are examined. It is then shown how this degradation is reflected on a steam turbine plant of the CCGT and on the complete combined cycle plant. TURBOMATCH, the gas turbine performance code of Cranfield University, was used to predict the effects of degraded gas path components of the gas turbine have on its performance as a whole plant. To simulate the steam (bottoming) cycle, another Fortran code was developed. Both codes were used together to form a complete software system that can predict the CCGT plant design point, off-design, and deteriorated (due to component degradation) performances. The results show that the overall output is very sensitive to many types of degradation, especially in the turbine of the gas turbine. Also shown is the effect on gas turbine exhaust conditions and how this affects the steam cycle.


Author(s):  
Xiaomo Jiang ◽  
Eduardo Mendoza ◽  
TsungPo Lin

Condition monitoring and diagnostics of a combined cycle gas turbine power plant has become an important tool to improve its availability, reliability, and performance. However, there are two major challenges in the diagnostics of performance degradation and anomaly in a single shaft combined cycle power plant. First, since the gas turbine and steam turbine in such a plant share a common generator, each turbine’s contribution to the total plant power output is not directly measured, but must be accurately estimated to identify the possible causes of plant level degradation. Second, multivariate operational data instrumented from a power plant need to be used in the plant model calibration, power splitting and degradation diagnostics. Sensor data always contains some degree of uncertainty. This adds to the difficulty of both estimation of gas turbine to steam turbine power split and degradation diagnostics. This paper presents an integrated probabilistic methodology for accurate power splitting and the degradation diagnostics of a single shaft combined cycle plant, accounting for uncertainties in the measured data. The method integrates the Bayesian inference approach, thermodynamic physics modeling, and sensed operational data seamlessly. The physics-based thermodynamic heat balance model is first established to model the power plant components and their thermodynamic relationships. The model is calibrated to model the plant performance at the design conditions of its main components. The calibrated model is then employed to simulate the plant performance at various operating conditions. A Bayesian inference method is next developed to determine the power split between the gas turbine and the steam turbine by comparing the measured and expected power outputs at different operation conditions, considering uncertainties in multiple measured variables. The calibrated model and calculated power split are further applied to pinpoint the possible causes at individual components resulting in the plant level degradation. The proposed methodology is demonstrated using operational data from a real-world single shaft combined cycle power plant with a known degradation issue. This study provides an effective probabilistic methodology to accurately split the power for degradation diagnostics of a single shaft combined cycle plant, addressing the uncertainties in multiple measured variables.


Sign in / Sign up

Export Citation Format

Share Document