A Collaborative Venture: The Advanced Gas Turbine Systems Research Program

Author(s):  
Daniel B. Fant ◽  
Lawrence P. Golan

The Advanced Gas Turbine Systems Research (AGTSR) program is a university-industry research consortium that was established in September 1992. The AGTSR program is sponsored by the Department of Energy–Morgantown Energy Technology Center. The South Carolina Energy Research and Development Center (SCERDC) heads the effort and is responsible for administering and managing the AGTSR program, which is expected to continue to the year 2000. At present, 67 American Universities are AGTSR Performing Members, representing 35 states. Two RFP’s have already been announced and the third RFP was released in December, 1994. There are presently 23 research subcontracts underway at Performing Member universities. Approximately seven new subcontracts are expected to be awarded in 1995. The research is focused on topics as defined by the AGTSR Industry Review Board composed of five major cost-sharing U.S. gas turbine manufacturers, including EPRI and GRI as advisors. All university projects must be relevant to advancing stationary gas turbines for the next generation of electrical power generation systems. Research areas being addressed include: turbine heat transfer, combustion modeling and instability, thermal barrier coatings, aerodynamic losses, and advanced cycle analyses. This paper will present the objectives and benefits of the AGTSR program, progress achieved to date, and future planned activity in fiscal year 1995.

Author(s):  
Richard A. Wenglarz ◽  
Lawrence P. Golan

The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for nearly a decade. The Advanced Gas Turbine Systems Research (AGTSR) program has been administered by SCIES for the U. S. DOE. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the AGTSR has brought together the engineering departments at the leading U.S. universities and U.S. combustion turbine developers to assist in providing a solid base of knowledge for the future generations of gas turbines. In the AGTSR program, an Industrial Review Board (IRB) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals that address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. Seventy-five (75) AGTSR university projects have been awarded in the areas of gas turbine combustion, aerodynamics/heat transfer, and materials. An overview of recent AGTSR university projects is given in this paper and research results from several of the projects are described in greater detail.


Author(s):  
William H. Day ◽  
Richard A. Wenglarz ◽  
Lawrence P. Golan

The University Turbine Systems Research (UTSR) Program, developed by the National Energy Technology Laboratory of the US Department of Energy, supports research in gas turbines which is performed at universities. An Industrial Review Board (IRB), consisting of gas turbine OEM’s, users, and suppliers of gas turbine components and technologies recommends topics for the research to DOE. They also review the universities’ proposals and recommend a short list of proposals from each solicitation for funding. Since the program’s inception in 1992 a total of 101 research projects have been awarded. There are 110 universities participating in the program and eligible to compete for UTSR research awards. The research is mostly in three areas: Combustion, Materials (mostly thermal barrier coatings) and Aerodynamics / Heat Transfer. The program has produced significant benefits for the gas turbine industry in these fields. This paper provides several examples of the most significant research results.


2011 ◽  
Vol 133 (05) ◽  
pp. 30-33 ◽  
Author(s):  
Lee S. Langston

This article explores the increasing use of natural gas in different turbine industries and in turn creating an efficient electrical system. All indications are that the aviation market will be good for gas turbine production as airlines and the military replace old equipment and expanding economies such as China and India increase their air travel. Gas turbines now account for some 22% of the electricity produced in the United States and 46% of the electricity generated in the United Kingdom. In spite of this market share, electrical power gas turbines have kept a much lower profile than competing technologies, such as coal-fired thermal plants and nuclear power. Gas turbines are also the primary device behind the modern combined power plant, about the most fuel-efficient technology we have. Mitsubishi Heavy Industries is developing a new J series gas turbine for the combined cycle power plant market that could achieve thermal efficiencies of 61%. The researchers believe that if wind turbines and gas turbines team up, they can create a cleaner, more efficient electrical power system.


2016 ◽  
Vol 138 (06) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article discusses various fields where gas turbines can play a vital role. Building engines for commercial jetliners is the largest market segment for the gas turbine industry; however, it is far from being the only one. One 2015 military gas turbine program of note was the announcement of an U.S. Air Force competition for an innovative design of a small turbine engine, suitable for a medium-size drone aircraft. The electrical power gas turbine market experienced a sharp boom and bust from 2000 to 2002 because of the deregulation of many electric utilities. Since then, however, the electric power gas turbine market has shown a steady increase, right up to present times. Coal-fired plants now supply less than 5 percent of the electrical load, having been largely replaced by new natural gas-fired gas turbine power plants. Working in tandem with renewable energy power facilities, the new fleet of gas turbines is expected to provide reliable, on-demand electrical power at a reasonable cost.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


2011 ◽  
Vol 133 (04) ◽  
pp. 52-52
Author(s):  
Rainer Kurz

This article discusses the importance of gas turbines, centrifugal compressors and pumps, and other turbomachines in processes that bring natural gas to the end users. To be useful, the natural gas coming from a large number of small wells has to be gathered. This process requires compression of the gas in several stages, before it is processed in a gas plant, where contaminants and heavier hydrocarbons are stripped from the gas. From the gas plant, the gas is recompressed and fed into a pipeline. In all these compression processes, centrifugal gas compressors driven by industrial gas turbines or electric motors play an important role. Turbomachines are used in a variety of applications for the production of oil and associated gas. For example, gas turbine generator sets often provide electrical power for offshore platforms or remote oil and gas fields. Offshore platforms have a large electrical demand, often requiring multiple large gas turbine generator sets. Similarly, centrifugal gas compressors, driven by gas turbines or by electric motors are the benchmark products to pump gas through pipelines, anywhere in the world.


1979 ◽  
Author(s):  
H. C. Daudet ◽  
C. A. Kinney

This paper presents a discussion of the significant results of a study program conducted for the Department of Energy to evaluate the potential for closed cycle gas turbines and the associated combustion heater systems for use in coal fired public utility power plants. Two specific problem areas were addressed: (a) the identification and analysis of system concepts which offer high overall plant efficiency consistent with low cost of electricity (COE) from coal-pile-to-bus-bar, and (b) the identification and conceptual design of combustor/heat exchanger concepts compatible for use as the cycle gas primary heater for those plant systems. The study guidelines were based directly upon the ground rules established for the ECAS studies to facilitate comparison of study results. Included is a discussion of a unique computer model approach to accomplish the system analysis and parametric studies performed to evaluate entire closed cycle gas turbine utility power plants with and without Rankine bottoming cycles. Both atmospheric fluidized bed and radiant/convective combustor /heat exchanger systems were addressed. Each incorporated metallic or ceramic heat exchanger technology. The work culminated in conceptual designs of complete coal fired, closed cycle gas turbine power plants. Critical component technology assessment and cost and performance estimates for the plants are also discussed.


Author(s):  
R. A. Wenglarz ◽  
C. Wilkes ◽  
R. C. Bourke ◽  
H. C. Mongia

This paper describes the first test of an industrial gas turbine and low emissions combustion system on coal-water-slurry fuel. The engine and combustion system have been developed over the past five years as part of the Heat Engines program sponsored by the Morgantown Energy Technology Center of the U.S. Department of Energy (DOE). The engine is a modified Allison 501-K industrial gas turbine designed to produce 3.5 MW of electrical power when burning natural gas or distillate fuel. Full load power output increases to approximately 4.9 MW when burning coal-water slurry as a result of additional turbine mass flow rate. The engine has been modified to accept an external staged combustion system developed specifically for burning coal and low quality ash-bearing fuels. Combustion staging permits the control of NOx from fuel-bound nitrogen while simultaneously controlling CO emissions. Water injection freezes molten ash in the quench zone located between the rich and lean zones. The dry ash is removed from the hot gas stream by two parallel cyclone separators. This paper describes the engine and combustor system modifications required for running on coal and presents the emissions and turbine performance data from the coal-water slurry testing. Included is a discussion of hot gas path ash deposition and planned future work that will support the commercialization of coal-fired gas turbines.


Author(s):  
William H. Day

Under the Gas Turbine Industrial Fellowship Program, students in Bachelor’s, Master’s and Ph. D. programs studying gas turbine-related technology spend 10 to 12 weeks employed at the facilities of turbine manufacturers or users of gas turbine equipment. The program is funded by the U.S. Department of Energy. This paper describes the Fellowship program, its relationship to the DOE Turbine Program, the University Turbine Systems Research (UTSR) program, and plans for future Fellowship development.


Author(s):  
Bruce D. Thompson ◽  
John J. Hartranft ◽  
Dan Groghan

Abstract When the concept of aircraft derivative marine gas turbines were originally proposed, one of the selling points was the engine was going to be easy to remove and replace thereby minimizing the operational impact on the ship. Anticipated Mean Time Between Removal (MTBR) of these engines was expected to be approximately 3000 hours, due mostly to turbine corrosion damage. This drove the design and construction of elaborate removal routes into the engine intakes; the expected time to remove and replace the engine was expected to be less than five days. However, when the first USN gas turbine destroyers started operating, it was discovered that turbine corrosion damage was not the problem that drove engine maintenance. The issues that drove engine maintenance were the accessories, the compressor, combustors and engine vibration. Turbine corrosion was discovered to be a longer term affect. This was primarily due to the turbine blade and vane coatings used and intake air filtration. This paper discusses how engine design, tooling development, maintenance procedure development and engine design improvements all contributed to extending the MTBR of USN propulsion and electrical power generation gas turbines on the DD 963, CG 47, DDG 51 and FFG 7 classes to greater than 20,000 hours. The ability to remove the gas turbine rapidly or in most cases repair the engine in-place has given the USN great maintenance flexibility, been very cost effective and not impacted operational readiness.


Sign in / Sign up

Export Citation Format

Share Document