scholarly journals Performance Analysis With Different Means of Cooling in a Combined Cycle

Author(s):  
Onkar Singh ◽  
R. Yadav

Combined cycle based power plants and their development and application for energy efficient base load power generation necessitates enforced cooling to maintain the topping cycle gas turbine blade temperature at permissible levels, attributed to the increased turbine inlet temperature and compressor pressure ratio, for the improved performance and reliability of combined cycle. The mathematical model based on expansion path inside gas turbine considering dilution of mainstream and aerodynamic mixing losses for a range of cooling medium has been developed based on internal, film, transpiration cooling technologies and a combination of these. It is found that the appreciation of a cycle configuration as well as the optimum pressure ratio and peak temperature vary significantly with types of cooling technology adopted. Steam cooling for rotor appears to be a very potential cooling medium, when employed with an appropriate cooling technology. This paper deals with the thermodynamic analysis of turbine cooling using, different means of cooling i.e. air, water and steam.

Author(s):  
Mayank Maheshwari ◽  
Onkar Singh

Abstract Performance of gas/steam combined cycle power plants relies upon the performance exhibited by both gas based topping cycle and steam based bottoming cycle. Therefore, the measures for improving the performance of the gas turbine cycle and steam bottoming cycle eventually result in overall combined cycle performance enhancement. Gas turbine cooling medium affects the cooling efficacy. Amongst different parameters in the steam bottoming cycle, the deaerator parameter also plays its role in cycle performance. The present study analyzes the effect of deaerator’s operating pressure being varied from 1.6 bar to 2.2 bar in different configurations of simple and reheat gas/steam combined cycle with different cooling medium for fixed cycle pressure ratio of 40, turbine inlet temperature of 2000 K and ambient temperature of 303 K with varying ammonia mass fraction from 0.6 to 0.9. Analysis of the results obtained for different combined cycle configuration shows that for the simple gas turbine and reheat gas turbine-based configurations, the maximum work output of 643.78 kJ/kg of air and 730.87 kJ/kg of air respectively for ammonia mass fraction of 0.6, cycle efficiency of 54.55% and 53.14% respectively at ammonia mass fraction of 0.7 and second law efficiency of 59.71% and 57.95% respectively at ammonia mass fraction of 0.7 is obtained for the configuration having triple pressure HRVG with ammonia-water turbine at high pressure and intermediate pressure and steam turbine operating at deaerator pressure of 1.6 bar.


Author(s):  
B Law ◽  
B. V. Reddy

Combined cycle power plants with a gas turbine topping cycle and a steam turbine bottoming cycle are widely used due to their high efficiencies. Combined cycle cogeneration has the possibility to produce power and process heat more efficiently, leading to higher performance and reduced green house gas emissions. The objective of the present work is to analyze and simulate a natural gas fired combined cycle cogeneration unit with multiple process heaters and to investigate the effect of operating variables on the performance. The operating conditions investigated include, gas turbine pressure ratio, process heat loads and process steam extraction pressure. The gas turbine pressure ratio significantly influences the performance of the combined cycle cogeneration system. It is also identified that extracting process steam at lower pressures improves the power generation and cogeneration efficiencies. The process heat load influences combined cycle efficiency and combined cycle cogeneration efficiency in opposite ways. It is also observed that using multiple process heaters with different process steam pressures, rather than a single process heater, improves the combined cycle cogeneration plant efficiency.


Author(s):  
P. Esna Ashari ◽  
V. Nayyeri ◽  
K. Sarabchee

Many factories in industry such as petrochemical plants, oil refineries and power plants need heat and power to support their process. This demand can be provided by a combined heat and power cycle (CHP) in the factory site. Some factories use gas turbine cycle to provide heat and power. Emissions from gas turbines, produced by burning fossil fuels in the combustion chambers, have important effects on air pollution. This is a significant problem in many developed and developing countries. Parameters such as inlet temperature and pressure ratio are the most effective parameters in gas turbine emission. By selecting an appropriate gas turbine, emission could be reduced to some extent. Further studies indicate that there is an optimum pressure ratio, which minimizes emissions.


Author(s):  
Christoph Schneider ◽  
Vladimir Navrotsky ◽  
Prith Harasgama

ABB has approximately 200 GT11N and GT11D type gas turbines currently operating in simple cycle and combined cycle power plants. Most of these machines are fairly mature with many approaching the end of their economic life. In order that the power producer may continue to operate a fleet with improved performance, Advanced Air Cooling Technology and Advanced Turbine Aerodynamics have been utilized to uprate these engines with the implementation of a completely new turbine module. The objective of the uprating program was to implement the advanced aero/cooling technology into a complete new turbine module with: • Improved power output for the gas turbine • Increase the GT cycle efficiency • Maintain or improve the gas turbine RAM (Reliability, Availability & Maintainability) • Reduce the Cost of Electricity • Maintain or reduce the emissions of the gas turbine The GT11NM gas turbine has been developed based on the GT11N which has been in operation since 1987 and Midland Cogeneration Venture (MCV-Midland, Michigan) was chosen to demonstrate the uprated GT11NM. The upate/retrofit of the GT11N engine was conducted in May/June 1997 and the resulting gas turbine - GT11NM has met and exceeded the performance goals set at the onset of the development program. The next sections detail the main changes to the turbine and the resulting performance improvements as established with the demonstration at Midland, Michigan.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Author(s):  
Adrian Dahlquist ◽  
Magnus Genrup ◽  
Mats Sjoedin ◽  
Klas Jonshagen

The aim of this paper is to establish and motivate the design parameters of a 125 MW Oxyfuel Combined Cycle (OCC) also referred to as the Semi-Closed Oxyfuel-Combusted Combined Cycle (SCOC-CC). This paper proposes a compatible OCC that does not include any unconventional features, beyond what is state-of-the-art in gas turbine technology today. Such features could challenge the feasibility to bring the concept to the market in a reasonable time. The OCC requires a higher pressure ratio compared to a conventional combined cycle in order to achieve exhaust conditions that fit the design of the bottoming cycle. However, a high gas turbine pressure ratio increases the complexity of the machine and must be weighted against the gain in efficiency. The OCC gas turbine is modeled using a cooling model which keeps the metal temperature of all cooled turbine stages constant while seeking the optimum pressure ratio. As the cycle is semi-closed the compressor inlet temperature is a design parameter: it is shown that there is an efficiency optimum clearly in the range of what is normally achievable. As the gas properties of the OCC flue gas differ from the conventional plant, the effects of this on the HRSG design are explored.


2014 ◽  
Author(s):  
Roberto Carapellucci ◽  
Lorena Giordano

Efficiency improvement in the gas turbine sector has been mainly driven by increasing the turbine inlet temperature and compressor pressure ratio. For a fixed technology level, a further efficiency gain can be achieved through the utilization of waste thermal energy. Regeneration is an internal recovery technique that allows the reduction of heat input required at combustor, by preheating the air at compressor outlet. Under certain operating conditions, the temperature of exhaust gas leaving the regenerator is still enough high to allow the steam production via an heat recovery steam generator (HRSG). Regeneration in steam-gas power plants (CCGT) has the potential to enhance thermal efficiency, but reduces the margins for external recovery and then the bottoming steam cycle capacity. Moreover, the reduction of exhausts temperature at gas turbine outlet requires the reconsideration of HRSG operating parameters, in order to limit the increase of waste heat at the stack. The aim of this study is to explore the potential benefits that regeneration in the gas cycle gives on the whole steam-gas power plant. The extent of energy and economic performances improvement is evaluated, varying the gas turbine specifications and the layout and operating conditions of HRSG. Hence simple and regenerative configurations based on single and multi-pressure HRSG are compared, focusing on efficiency, specific CO2 emissions and unit cost of electricity (COE).


Author(s):  
Meherwan P. Boyce ◽  
Cyrus B. Meher-Homji ◽  
A. N. Lakshminarasimha

A wide variety of gas turbine based cycles exist in the market today with several technologies being promoted by individual Original Equipment Manufacturers. This paper is focused on providing users with a conceptual framework within which to view these cycles and choose suitable options for their needs. A basic parametric analysis is provided to show the interdependency of Turbine Inlet Temperature (TIT) and Pressure Ratio on cycle efficiency and specific work.


Author(s):  
James Spelling ◽  
Björn Laumert ◽  
Torsten Fransson

A dynamic simulation model of a hybrid solar gas-turbine power plant has been developed, allowing determination of its thermodynamic and economic performance. In order to examine optimum gas-turbine designs for hybrid solar power plants, multi-objective thermoeconomic analysis has been performed, with two conflicting objectives: minimum levelized electricity costs and minimum specific CO2 emissions. Optimum cycle conditions: pressure-ratio, receiver temperature, turbine inlet temperature and flow rate, have been identified for a 15 MWe gas-turbine under different degrees of solarization. At moderate solar shares, the hybrid solar gas-turbine concept was shown to provide significant water and CO2 savings with only a minor increase in the levelized electricity cost.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


Sign in / Sign up

Export Citation Format

Share Document