EFFECT OF OPERATING VARIABLES ON THE PERFORMANCE OF A COMBINED CYCLE COGENERATION SYSTEM WITH MULTIPLE PROCESS HEATERS

Author(s):  
B Law ◽  
B. V. Reddy

Combined cycle power plants with a gas turbine topping cycle and a steam turbine bottoming cycle are widely used due to their high efficiencies. Combined cycle cogeneration has the possibility to produce power and process heat more efficiently, leading to higher performance and reduced green house gas emissions. The objective of the present work is to analyze and simulate a natural gas fired combined cycle cogeneration unit with multiple process heaters and to investigate the effect of operating variables on the performance. The operating conditions investigated include, gas turbine pressure ratio, process heat loads and process steam extraction pressure. The gas turbine pressure ratio significantly influences the performance of the combined cycle cogeneration system. It is also identified that extracting process steam at lower pressures improves the power generation and cogeneration efficiencies. The process heat load influences combined cycle efficiency and combined cycle cogeneration efficiency in opposite ways. It is also observed that using multiple process heaters with different process steam pressures, rather than a single process heater, improves the combined cycle cogeneration plant efficiency.

Author(s):  
B. Law ◽  
B. V. Reddy

Combined cycle cogeneration systems have the ability to produce power and process heat more efficiently, leading to higher performance and reduced green house gas emissions. In the present work the performance of a natural gas fired combined cycle cogeneration unit with multiple process heaters is investigated to study the effect of operating variables on the performance. The operating conditions investigated include, gas turbine pressure ratio, process heat loads and process steam extraction pressure. The gas turbine pressure ratio significantly influences the performance of the combined cycle cogeneration system. The process heat load influences combined cycle efficiency and combined cycle cogeneration efficiency in opposite ways. The exergy analysis is conducted to identify the exergy destruction and losses in different components of the combined cycle cogeneration unit.


Author(s):  
Onkar Singh ◽  
R. Yadav

Combined cycle based power plants and their development and application for energy efficient base load power generation necessitates enforced cooling to maintain the topping cycle gas turbine blade temperature at permissible levels, attributed to the increased turbine inlet temperature and compressor pressure ratio, for the improved performance and reliability of combined cycle. The mathematical model based on expansion path inside gas turbine considering dilution of mainstream and aerodynamic mixing losses for a range of cooling medium has been developed based on internal, film, transpiration cooling technologies and a combination of these. It is found that the appreciation of a cycle configuration as well as the optimum pressure ratio and peak temperature vary significantly with types of cooling technology adopted. Steam cooling for rotor appears to be a very potential cooling medium, when employed with an appropriate cooling technology. This paper deals with the thermodynamic analysis of turbine cooling using, different means of cooling i.e. air, water and steam.


2014 ◽  
Author(s):  
Roberto Carapellucci ◽  
Lorena Giordano

Efficiency improvement in the gas turbine sector has been mainly driven by increasing the turbine inlet temperature and compressor pressure ratio. For a fixed technology level, a further efficiency gain can be achieved through the utilization of waste thermal energy. Regeneration is an internal recovery technique that allows the reduction of heat input required at combustor, by preheating the air at compressor outlet. Under certain operating conditions, the temperature of exhaust gas leaving the regenerator is still enough high to allow the steam production via an heat recovery steam generator (HRSG). Regeneration in steam-gas power plants (CCGT) has the potential to enhance thermal efficiency, but reduces the margins for external recovery and then the bottoming steam cycle capacity. Moreover, the reduction of exhausts temperature at gas turbine outlet requires the reconsideration of HRSG operating parameters, in order to limit the increase of waste heat at the stack. The aim of this study is to explore the potential benefits that regeneration in the gas cycle gives on the whole steam-gas power plant. The extent of energy and economic performances improvement is evaluated, varying the gas turbine specifications and the layout and operating conditions of HRSG. Hence simple and regenerative configurations based on single and multi-pressure HRSG are compared, focusing on efficiency, specific CO2 emissions and unit cost of electricity (COE).


Author(s):  
Stephan Heide ◽  
Christian Felsmann ◽  
Uwe Gampe ◽  
Sven Boje ◽  
Bernd Gericke ◽  
...  

Existing solar thermal power plants are based on steam turbine cycles. While their process temperature is limited, solar gas turbine (GT) systems provide the opportunity to utilize solar heat at a much higher temperature. Therefore there is potential to improve the efficiency of future solar thermal power plants. Solar based heat input to substitute fuel requires specific GT features. Currently the portfolio of available GTs with these features is restricted. Only small capacity research plants are in service or in planning. Process layout and technology studies for high solar share GT systems have been carried out and have already been reported by the authors. While these investigations are based on a commercial 10MW class GT, this paper addresses the parameterization of high solar share GT systems and is not restricted to any type of commercial GT. Three configurations of solar hybrid GT cycles are analyzed. Besides recuperated and simple GT with bottoming Organic Rankine Cycle (ORC), a conventional combined cycle is considered. The study addresses the GT parameterization. Therefore parametric process models are used for simulation. Maximum electrical efficiency and associated optimum compressor pressure ratio πC are derived at design conditions. The pressure losses of the additional solar components of solar hybrid GTs have a different adversely effect on the investigated systems. Further aspects like high ambient temperature, availability of water and influence of compressor pressure level on component design are discussed as well. The present study is part of the R&D project Hybrid High Solar Share Gas Turbine Systems (HYGATE) which is funded by the German Ministry for the Environment, Nature and Nuclear Safety and the Ministry of Economics and Technology.


Author(s):  
Mayank Maheshwari ◽  
Onkar Singh

Abstract Performance of gas/steam combined cycle power plants relies upon the performance exhibited by both gas based topping cycle and steam based bottoming cycle. Therefore, the measures for improving the performance of the gas turbine cycle and steam bottoming cycle eventually result in overall combined cycle performance enhancement. Gas turbine cooling medium affects the cooling efficacy. Amongst different parameters in the steam bottoming cycle, the deaerator parameter also plays its role in cycle performance. The present study analyzes the effect of deaerator’s operating pressure being varied from 1.6 bar to 2.2 bar in different configurations of simple and reheat gas/steam combined cycle with different cooling medium for fixed cycle pressure ratio of 40, turbine inlet temperature of 2000 K and ambient temperature of 303 K with varying ammonia mass fraction from 0.6 to 0.9. Analysis of the results obtained for different combined cycle configuration shows that for the simple gas turbine and reheat gas turbine-based configurations, the maximum work output of 643.78 kJ/kg of air and 730.87 kJ/kg of air respectively for ammonia mass fraction of 0.6, cycle efficiency of 54.55% and 53.14% respectively at ammonia mass fraction of 0.7 and second law efficiency of 59.71% and 57.95% respectively at ammonia mass fraction of 0.7 is obtained for the configuration having triple pressure HRVG with ammonia-water turbine at high pressure and intermediate pressure and steam turbine operating at deaerator pressure of 1.6 bar.


Author(s):  
R. Yadav

The increase in efficiency of combined cycle has mainly been caused by the improvements in gas turbine cycle efficiency. With the increase in firing temperature the exhaust temperature is substantially high around 873 K for moderate compressor pressure ratio, which has positive influence on steam cycle efficiency. Minimizing the irreversibility within the heat recovery steam generator HRSG and choosing proper steam cycle configuration with optimized steam parameters improve the steam cycle efficiency and thus in turn the combined cycle efficiency. In this paper, LM9001H gas turbine, a state of art technology turbine with modified compressor pressure ratio has been chosen as a topping cycle. Various bottoming cycles alternatives (sub-critical) coupled with LM9001H topping cycle with and without recuperation such as dual and triple pressure steam cycles with and without reheat have been chosen to predict the performance of combined cycle.


1983 ◽  
Vol 105 (4) ◽  
pp. 821-825 ◽  
Author(s):  
J. Wolf ◽  
S. Moskowitz

Studies of combined cycle electic power plants have shown that increasing the firing temperature and pressure ratio of the gas turbine can substantially improve the specific power output of the gas turbine as well as the combined cycle plant efficiency. Clearly this is a direction in which we can proceed to conserve the world’s dwindling petroleum fuel supplies. Furthermore, tomorrow’s gas turbines must do more than operate at higher temperature; they will likely face an aggressive hot gas stream created by the combustion of heavier oils or coal-derived liquid or gaseous fuels. Extensive tests have been performed on two rotating turbine rigs, each with a transpiration air cooled turbine operating in the 2600 to 3000°F (1427 to 1649°C) temperature range at increasing levels of gas stream particulates and alkali metal salts to simulate operation on coal-derived fuel. Transpiration air cooling was shown to be effective in maintaining acceptable metal temperatures, and there was no evidence of corrosion, erosion, or deposition. The rate of transpiration skin cooling flow capacity exhibited a minor loss in the initial exposure to the particulate laden gas stream of less than 100 hours, but the flow reduction was commensurate with that produced by normal oxidation of the skin material at the operating temperatures of 1350°F (732°C). The data on skin permeability loss from both cascade and engine tests compared favorably with laboratory furnace oxidation skin specimens. To date, over 10,000 hr of furnace exposure has been conducted. Extrapolation of the data to 50,000 hr indicates the flow capacity loss would produce an acceptable 50°F (10°C) increase in skin operating temperature.


Author(s):  
Stanley Pace ◽  
Arden Walters

Increased competition fostered by changes in legislation governing power generation entities has engendered a need to closely assess the economics of operating older-electric generating units. Decisions must be made as to whether these units should be retired and replaced with new, greenfield generation capacity, whether capacity should be purchased from other generation companies, or whether such units should be repowered in some way. The repowering alternative has merit when economic factors and environmental considerations show it to project the least cost of electricity over other choices. The chief advantages of repowering, include use of existing real estate and infrastructure, existing transmission facilities and staffing. Since the repowered plant usually emits less stack gas pollutants per unit of energy generated then the original plant, environmental benefits can also accrue. Various types of gas turbine based repowering options for steam electric plants are presented. All the approaches discussed involve the addition of gas turbines to the cycle and the consequent benefit of some form of combined cycle operation. This option includes boiler retirement (and replacement with combined cycle), hot or warm windbox repowering (the boiler is retained and a gas turbine topping cycle is added), feedwater heating repowering (the gas turbine exhaust heats feedwater), and site repowering (only the site infrastructure is re-used as the site for a combined cycle). Business considerations are discussed in terms of their impact on the decision to repower and technology selection. An example involving feedwater heater repowering is used to illustrate the interaction between the business and technical aspects of repowering.


Author(s):  
A. D. Ramaglia ◽  
U. Ruedel ◽  
V. Stefanis ◽  
S. Florjancic

The operating conditions of the gas turbine combined cycle (GTCC) power plants have significantly changed over the last few years and are directed towards an improved operational and fuel flexibility, increased GT power output and efficiency and improved component lifetime. The purpose of this paper is to provide an overview of the development, analysis and validation of modern gas turbine features, parts and components for the AE64.3, AE94.2, AE94.3A, the GT26 and GT36. The development of compressor blades with a low uncertainty using multidisciplinary optimization techniques is outlined while the lifetime of a welded rotor is quantified using a damage-tolerant lifetime assessment method based on experimental creep data. For the lateral dynamics of the shaft train a modal-based approach supported by elastic structures will be described. For the axial flow turbine, the aerodynamic and heat transfer related design and validation of film cooled vanes and blades will be introduced with a particular focus on the tip area, the platforms and the application of under-platform dampers. Furthermore, the impact of the combustor-turbine interface on the turbine vane aerodynamics and film cooling characteristics is shown. For the continued very successful operation of the Constant Pressure Sequential Combustion System (CPSC), the thermos-acoustic activities of can combustors as well as the rig-to-engine transferability are presented. Recent approaches to the development of SLM parts for turbine hardware, specifically the approach used to select process parameters and creation of preliminary material models will also be briefly summarized.


Author(s):  
James C. Corman

A revolutionary step has been taken in the development of the Next Advance in Power Generation Systems — “H” Technology Combined Cycle. This new gas turbine combined cycle system increases thermal performance to the 60% level by increasing gas turbine operating conditions to 2600°F (1430°C) at a pressure ratio of 23 to 1. This represents a significant increase in operating temperature for the gas turbine. However, the potential for single digit NOx levels (based upon 15% O2 in the exhaust) has been retained. The combined effect of performance increase and environmental control is achieved by an innovative closed loop steam cooling system which tightly integrated the gas turbine and steam turbine cycles. Although a significant advance has been taken in performance, the new power generation system has been configured with a substantial number of proven concepts and technology programs are ongoing to validate the new features. The technical activities which support the introduction of the new turbine system have reached a point in the development cycle where the results are integrated into the design methods. This has permitted the “H” Technology to achieve a design readiness status and the first unit will be under test in late 1997.


Sign in / Sign up

Export Citation Format

Share Document