CFD Based Sensitivity Study of Flow Parameters for Engine Like Film Cooling Conditions

Author(s):  
Stefan Baldauf ◽  
Michael Scheurlen

A standard CFD code with two-layer k-ε-model was used to calculate film cooling effectiveness of flat plate test cases. Experimental data from the literature were taken to perform extensive validation of the code for film cooling effectiveness prediction. Emphasis was put on injection of cooling gas through one row of cylindrical holes in the streamwise direction. Blowing ratio, density ratio, blowing angle, pitch, and hole length to diameter ratio were varied in a wide range. It was found that the code is well suited for the prediction of lateral averaged film cooling effectiveness for common film cooling conditions. A similarity analysis is presented for the prescribed film cooling problem to isolate the influence parameters of flow properties and geometry. A reduction of the parameters of influence was achieved using physical implications. The magnitude of the remaining parameters was compared for literature reported experimental results and gas turbine applications. It was found that experimental realized Reynolds and Eckert numbers are mostly far from turbine engine conditions. Therefore the validated CFD code was used to extrapolate the experimental configuration to engine like conditions. It was found that the examined Reynolds and Eckert numbers had no significant impact on lateral averaged film cooling effectiveness. It is hence possible to present a reduced but complete set of the governing influence parameters on the discussed film cooling problem.

Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometrical parameters like blowing angle and hole pitch as well as the flow parameters blowing rate and density ratio were varied in a wide range emphasizing on engine relevant conditions. An IR-thermography technique was used to perform local measurements of the surface temperature field. A spatial resolution of up to 7 data points per hole diameter extending up to 80 hole diameters downstream of the ejection location was achieved. Since all technical surface materials have a finite thermoconductivity, no ideal adiabatic conditions could be established. Therefore, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the backside of the testplate and remnant heat flux within the testplate in lateral and streamwise direction were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD-codes predicting discrete hole film cooling.


1999 ◽  
Vol 123 (4) ◽  
pp. 758-765 ◽  
Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local adiabatic film cooling effectiveness on a flat plate surface downstream a row of cylindrical holes was investigated. Geometric parameters such as blowing angle and hole pitch, as well as the flow parameters blowing rate and density ratio, were varied in a wide range emphasizing engine relevant conditions. IR thermography was used to perform local measurements of the surface temperature field. A spatial resolution of up to seven data points per hole diameter extending to 80 hole diameters downstream of the ejection location was achieved. Since all technical wall materials have a finite thermoconductivity, a procedure for correcting the measured surface temperature data based on a Finite Element analysis was developed. Heat loss over the back and remnant heat flux within the test plate in lateral and streamwise directions were taken into account. The local effectiveness patterns obtained are systematically analyzed to quantify the influence of the various parameters. As a result, a detailed description of the characteristics of local adiabatic film cooling effectiveness is given. Furthermore, the locally resolved experimental results can serve as a data base for the validation of CFD codes predicting discrete hole film cooling.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.


Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


2021 ◽  
Author(s):  
Izhar Ullah ◽  
Sulaiman M. Alsaleem ◽  
Lesley M. Wright ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

Abstract This work is an experimental study of film cooling effectiveness on a blade tip in a stationary, linear cascade. The cascade is mounted in a blowdown facility with controlled inlet and exit Mach numbers of 0.29 and 0.75, respectively. The free stream turbulence intensity is measured to be 13.5 % upstream of the blade’s leading edge. A flat tip design is studied, having a tip gap of 1.6%. The blade tip is designed to have 15 shaped film cooling holes along the near-tip pressure side (PS) surface. Fifteen vertical film cooling holes are placed on the tip near the pressure side. The cooling holes are divided into a 2-zone plenum to locally maintain the desired blowing ratios based on the external pressure field. Two coolant injection scenarios are considered by injecting coolant through the tip holes only and both tip and PS surface holes together. The blowing ratio (M) and density ratio (DR) effects are studied by testing at blowing ratios of 0.5, 1.0, and 1.5 and three density ratios of 1.0, 1.5, and 2.0. Three different foreign gases are used to create density ratio effect. Over-tip flow leakage is also studied by measuring the static pressure distributions on the blade tip using the pressure sensitive paint (PSP) measurement technique. In addition, detailed film cooling effectiveness is acquired to quantify the parametric effect of blowing ratio and density ratio on a plane tip design. Increasing the blowing ratio and density ratio resulted in increased film cooling effectiveness at all injection scenarios. Injecting coolant on the PS and the tip surface also resulted in reduced leakage over the tip. The conclusions from this study will provide the gas turbine designer with additional insight on controlling different parameters and strategically placing the holes during the design process.


Author(s):  
Sadam Hussain ◽  
Xin Yan

Abstract Film cooling is one of the most critical technologies in modern gas turbine engine to protect the high temperature components from erosion. It allows gas turbines to operate above the thermal limits of blade materials by providing the protective cooling film layer on outer surfaces of blade against hot gases. To get a higher film cooling effect on plain surface, current study proposes a novel strategy with the implementation of hole-pair into ramp. To gain the film cooling effectiveness on the plain surface, RANS equations combined with k-ω turbulence model were solved with the commercial CFD solver ANSYS CFX11.0. In the numerical simulations, the density ratio (DR) is fixed at 1.6, and the film cooling effect on plain surface with different configurations (i.e. with only cooling hole, with only ramp, and with hole-pair in ramp) were numerically investigated at three blowing ratios M = 0.25, 0.5, and 0.75. The results show that the configuration with Hole-Pair in Ramp (HPR) upstream the cooling hole has a positive effect on film cooling enhancement on plain surface, especially along the spanwise direction. Compared with the baseline configuration, i.e. plain surface with cylindrical hole, the laterally-averaged film cooling effectiveness on plain surface with HPR is increased by 18%, while the laterally-averaged film cooling effectiveness on plain surface with only ramp is increased by 8% at M = 0.5. As the blowing ratio M increases from 0.25 to 0.75, the laterally-averaged film cooling effectiveness on plain surface with HPR is kept on increasing. At higher blowing ratio M = 0.75, film cooling effectiveness on plain surface with HPR is about 19% higher than the configuration with only ramp.


Author(s):  
K.-S. Kim ◽  
Youn J. Kim ◽  
S.-M. Kim

To enhance the film cooling performance in the vicinity of the turbine blade leading edge, the flow characteristics of the film-cooled turbine blade have been investigated using a cylindrical body model. The inclination of the cooling holes is along the radius of the cylindrical wall and 20 deg relative to the spanwise direction. Mainstream Reynolds number based on the cylinder diameter was 1.01×105 and 0.69×105, and the mainstream turbulence intensities were about 0.2% in both Reynolds numbers. CO2 was used as coolant to simulate the effect of density ratio of coolant-to-mainstream. Furthermore, the effect of coolant flow rates was studied for various blowing ratios of 0.4, 0.7, 1.1, and 1.4, respectively. In experiment, spatially-resolved temperature distributions along the cylindrical body surface were visualized using infrared thermography (IRT) in conjunction with thermocouples, digital image processing, and in situ calibration procedures. This comparison shows the results generated to be reasonable and physically meaningful. The film cooling effectiveness of current measurement (0.29 mm × 0.33 min per pixel) presents high spatial and temperature resolutions compared to other studies. Results show that the blowing ratio has a strong effect on film cooling effectiveness and the coolant trajectory is sensitive to the blowing ratio. The local spanwise-averaged effectiveness can be improved by locating the first-row holes near the second-row holes.


Author(s):  
Bai-Tao An ◽  
Jian-Jun Liu ◽  
Si-Jing Zhou ◽  
Xiao-Dong Zhang ◽  
Chao Zhang

This paper presents a new configuration of discrete film hole, i.e., the slot-based diffusion hole. Retaining the similar diffusion features to a traditional diffusion hole, the slot-based diffusion hole transforms the cross section of circle for the traditional diffusion hole to a flattened rectangle with respect to the equivalent cross-sectional area. Consequently, the exit width of the new hole is effectively enlarged. To verify the film cooling effectiveness, a low speed flat plate experimental facility incorporated with Pressure Sensitive Paint (PSP) measurement technique was employed to obtain the adiabatic film cooling effectiveness. The experiments were performed with hole pitch to diameter ratio p/D=6 and density ratio DR=1.38. The blowing ratio was varied from M=0.5 to M=2.5. A fan-shaped hole and two slot-based diffusion holes were tested and compared. Three-dimensional numerical simulation was employed to analyze the flow field in detail. The experimental results showed that the area averaged effectiveness of two slot-based diffusion holes is significantly higher than that of the fan-shaped hole when the blowing ratio exceeds 1.0. The slot-based diffusion hole demonstrates the great advantage over the fan-shaped hole at hole exit and maintains this to far downstream. The numerical results showed that the ends shape of the flattened rectangular cross section has large influences on film distribution patterns and downstream vortex structures. The semi-circle and straight line ends shapes lead to a bi-peak and a single-peak effectiveness pattern, respectively. The optimal ends shape can regulate the vortex structures and improve the film cooling effectiveness further.


1980 ◽  
Vol 102 (3) ◽  
pp. 524-534 ◽  
Author(s):  
G. J. Sturgess

The paper deals with a small but important part of the overall gas turbine engine combustion system and continues earlier published work on turbulence effects in film cooling to cover the case of film turbulence. Film cooling of the gas turbine combustor liner imposes certain geometric limitations on the coolant injection device. The impact of practical film injection geometry on the cooling is one of increased rates of film decay when compared to the performance from idealized injection geometries at similar injection conditions. It is important to combustor durability and life estimation to be able to predict accurately the performance obtainable from a given practical slot. The coolant film is modeled as three distinct regions, and the effects of injection slot geometry on the development of each region are described in terms of film turbulence intensity and initial circumferential non-uniformity of the injected coolant. The concept of the well-designed slot is introduced and film effectiveness is shown to be dependent on it. Only slots which can be described as well-designed are of interest in practical equipment design. A prediction procedure is provided for well-designed slots which describes growth of the film downstream of the first of the three film regions. Comparisons of predictions with measured data are made for several very different well-designed slots over a relatively wide range of injection conditions, and good agreement is shown.


2006 ◽  
Vol 129 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Scot K. Waye ◽  
David G. Bogard

Adiabatic film cooling effectiveness of axial holes embedded within a transverse trench on the suction side of a turbine vane was investigated. High-resolution two-dimensional data obtained from infrared thermography and corrected for local conduction provided spatial adiabatic effectiveness data. Flow parameters of blowing ratio, density ratio, and turbulence intensity were independently varied. In addition to a baseline geometry, nine trench configurations were tested, all with a depth of 1∕2 hole diameter, with varying widths, and with perpendicular and inclined trench walls. A perpendicular trench wall at the very downstream edge of the coolant hole was found to be the key trench characteristic that yielded much improved adiabatic effectiveness performance. This configuration increased adiabatic effectiveness up to 100% near the hole and 40% downstream. All other trench configurations had little effect on the adiabatic effectiveness. Thermal field measurements confirmed that the improved adiabatic effectiveness that occurred for a narrow trench with perpendicular walls was due to a lateral spreading of the coolant and reduced coolant jet separation. The cooling levels exhibited by these particular geometries are comparable to shaped holes, but much easier and cheaper to manufacture.


Sign in / Sign up

Export Citation Format

Share Document