Rural Electrification Using Diesel Power Systems in Fiji: A Review

Author(s):  
Surendra Prasad

For small developing countries such as Fiji being devoid of conventional energy resources such as petroleum products, coal or natural gas, there is always heavy, and in many cases total, reliance on conventional energy sources for transportation, industries and for electricity generation. Fiji, like most of its South Pacific island neighbours, has relied very heavily on petroleum products for all of these, except for electricity generation since 1983, when hydro-electricity became the major source of electricity for the country.

2021 ◽  
Vol 144 ◽  
pp. 14-21
Author(s):  
Vladimir P. Polevanov ◽  

The growth in primary energy consumption in 2019 by 1.3% was provided by renewable energy sources and natural gas, which together provided 75% of the increase. China in the period 2010–2020 held a leading position in the growth of demand for energy resources, but according to forecasts, India will join it in the current decade.


2020 ◽  
Vol 12 (15) ◽  
pp. 6084
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Ștefan Preda ◽  
Osman Bulent Tor

Electricity generation from renewable energy sources (RES) has a common feature, that is, it is fluctuating, available in certain amounts and only for some periods of time. Consuming this electricity when it is available should be a primary goal to enhance operation of the RES-powered generating units which are particularly operating in microgrids. Heavily influenced by weather parameters, RES-powered systems can benefit from implementation of sensors and fuzzy logic systems to dynamically adapt electric loads to the volatility of RES. This study attempts to answer the following question: How to efficiently integrate RES to power systems by means of sustainable energy solutions that involve sensors, fuzzy logic, and categorization of loads? A Smart Adaptive Switching Module (SASM) architecture, which efficiently uses electricity generation of local available RES by gradually switching electric appliances based on weather sensors, power forecast, storage system constraints and other parameters, is proposed. It is demonstrated that, without SASM, the RES generation is supposed to be curtailed in some cases, e.g., when batteries are fully charged, even though the weather conditions are favourable. In such cases, fuzzy rules of SASM securely mitigate curtailment of RES generation by supplying high power non-traditional storage appliances. A numerical case study is performed to demonstrate effectiveness of the proposed SASM architecture for a RES system located in Hulubești (Dâmbovița), Romania.


Author(s):  
Amanda Halim ◽  
Ahmad Fudholi ◽  
Stephen Phillips ◽  
Kamaruzzaman Sopian

<p>At present, solar energy is perceived to be one of the world’s contributive energy sources. Holding characteristics such as inexhaustible and non-polluting, making it as the most prominent among renewable energy (RE) sources. The application of the solar energy has been well-developed and used for electricity generation through Photovoltaic (PV) as the harvesting medium. PV cells convert heat from the sun directly into the electricity to power up the electric loads. Solar PV system is commonly built in a rural area where it cannot be powered up by the utility grid due to location constrains. In order to avoid the electricity fluctuation because of unsteady amount of solar radiation, PV solar hybrid is the efficient solution for rural electrifications. This paper presents a review on optimised Hybrid Solar-PV Diesel system configurations installed and used to power up off grid settlements at various locations worldwide.</p>


Author(s):  
H. Griepentrog ◽  
G. Tsatsaronis ◽  
T. Morosuk

Natural gas is one of the most important primary energy sources. It is expected to account for about 30% of total electricity generation by 2020 compared with 17% in 2000. Liquefied natural gas (LNG) is expected to have a large share in this expansion of use of natural gas. In the last years the total cost of LNG technology has decreased mainly due to improvements in the liquefaction process. The paper discusses some novel, gas-turbine-based concepts for combining LNG regasification with electricity generation. A comparative exergetic evaluation of the concepts is presented.


Author(s):  
Soner Top ◽  
Hüseyin Vapur

As a developing country with over 70% external dependence on energy, there is an increasing demand for electricity in Turkey. In this study, energy resources strategies in Turkey have been investigated and the historical development of its energy usage was summarised. Turkey's energy demand has increased as a result of industrial development and the various energy sources have been selected in different periods to meet this need. In all periods, fossil fuels have taken the lead in energy production. Although investments in renewable and nuclear energy sources have increased, fossil energy sources will not be replaced in the near future. The future fossil fuel production, the electricity production and the greenhouse emissions have been calculated and interpreted by time series (ARIMA), statistically. The forecasts mainly show that natural gas based electricity generation will decrease to 9.3% and renewable energy based electricity generation will increase to 25.6% in the next decade. It is obvious that the fossil fuels based greenhouse emissions will be 375.61 million tons CO2 equivalent in 2026 and the largest share of this emission will be derived from the natural gas by 66.3 billion m3.


Author(s):  
Mohammad Miyan ◽  
M. K. Shukla

The sources of energy that are exhaustible and being made unceasingly in nature are known as nonconventional energy or renewable sources of energy. The standard sources embrace the fossil fuels i.e., coal, oil and gas, sorts of atomic energy i.e., Uranium, whereas the nonconventional sources like daylight, wind, rain, tides, and energy heat, that are renewable. Since theevent and progress of grouping are closely associated with energy sources, several countries throughout the globe have engaged themselves in looking and developing non-conventional energy sources that may be terribly essential to sustain the life cycle of person. The consumption of energy is directly proportional to the progress of the grouping. With ever growing population, improvement within the living commonplace of the mankind, industrialization of developing countries, the world demand for energy is anticipated to extend considerably within the close to future. The energy crisis that began in 1973 caused oil provides to decrease and costs to rise usuriously. This crisis forced developing countries to cut back or hold over necessary development programs, so that they may purchase oil to stay their economies operational. It created the imperative necessity to seek out and develop energy sources, like different fossil fuels i.e., coal, gas, atomic energy, and renewable energy resources. Our country, Republic of India has additionally taken sure initiatives during this read. In this paper, a review based mostly study has been given concerning numerous non-conventional energy sources and their current standing and usage in India.


2021 ◽  
pp. 43-48
Author(s):  
Sanyam Indurkhya ◽  
Shravan Vishwakarma

Reduced coal usage has resulted in the assimilation of the more renewable energy systems in latest electric power systems for a variety of reasons.Renewable Energy resources are playing most significant role in the developing countries. Solar energy and wind energy This work basically presents the basic overview of the Hybrid Energy Systems (HESs) which are utilized for inserting reactive power.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4156 ◽  
Author(s):  
Handriyanti Diah Puspitarini ◽  
Baptiste François ◽  
Marco Baratieri ◽  
Casey Brown ◽  
Mattia Zaramella ◽  
...  

Combined heat and power systems (CHP) produce heat and electricity simultaneously. Their resulting high efficiency makes them more attractive from the energy managers’ perspective than other conventional thermal systems. Although heat is a by-product of the electricity generation process, system operators usually operate CHP systems to satisfy heat demand. Electricity generation from CHP is thus driven by the heat demand, which follows the variability of seasonal temperature, and thus is not always correlated with the fluctuation of electricity demand. Consequently, from the perspective of the electricity grid operator, CHP systems can be seen as a non-controllable energy source similar to other renewable energy sources such as solar, wind or hydro. In this study, we investigate how ‘non-controllable’ electricity generation from CHP systems combines with ‘non-controllable’ electricity generation from solar photovoltaic panels (PV) and run-of-the river (RoR) hydropower at a district level. Only these three energy sources are considered within a 100% renewable mix scenario. Energy mixes with different shares of CHP, solar and RoR are evaluated regarding their contribution to total energy supply and their capacity to reduce generation variability. This analysis is carried out over an ensemble of seventeen catchments in North Eastern Italy located along a climate transect ranging from high elevation and snow dominated head-water catchments to rain-fed and wet basins at lower elevations. Results show that at a district scale, integration of CHP systems with solar photovoltaic and RoR hydropower leads to higher demand satisfaction and lower variability of the electricity balance. Results also show that including CHP in the energy mix modifies the optimal relative share between solar and RoR power generation. Results are consistent across the climate transect. For some districts, using the electricity from CHP might also be a better solution than building energy storage for solar PV.


Sign in / Sign up

Export Citation Format

Share Document