Lattice Boltzmann Simulations of Flow in Two-Dimensional Lid-Driven Semi-Circular Cavity

Author(s):  
Fan Yang ◽  
Lianguo Liu ◽  
Xuming Shi ◽  
Xueyan Guo

The flow pattern in a two-dimensional lid-driven semi-circular cavity is analyzed using the lattice Boltzmann method (LBM). The treatment of curved boundary with second-order accuracy is used. The streamline contours as well as dimensionless velocity component along the central line of a semi-circular cavity are obtained for different Reynolds numbers. The numerical results show that the LBM can capture the formation of primary, secondary and tertiary vortices exactly as the Reynolds number increases and has a great agreement with those of current literatures.

2011 ◽  
Vol 354-355 ◽  
pp. 594-598
Author(s):  
Fan Yang ◽  
Lian Guo Liu ◽  
Xu Ming Shi ◽  
Xue Yan Guo

The flow pattern in a two-dimensional wall-driven semi-circular cavity is analyzed using the lattice Boltzmann method (LBM). The treatment of curved boundary with second-order accuracy is used. The streamline contours as well as dimensionless velocity component along the central line of a semi-circular cavity are obtained for different Reynolds numbers. The numerical results show that the LBM can capture the formation of primary, secondary and tertiary vortices exactly as the Reynolds number increases and has a great agreement with those of current literatures.


2009 ◽  
Vol 283-286 ◽  
pp. 364-369 ◽  
Author(s):  
M.R. Arab ◽  
Bernard Pateyron ◽  
Mohammed El Ganaoui ◽  
Nicolas Calvé

For simulating flows in a porous medium, a numerical tool based on the Lattice Boltzmann Method (LBM) is developed with regards to the classical D2Q9 model. A short description of this model is presented. This technique, applied to two-dimensional configurations, indicates its ability to simulate phenomena of heat and mass transfer. The numerical study is extended to estimate physical parameters that characterize porous materials, like the so-called Effective Thermal Conductivity (ETC) which is of our interest in this paper. Obtained results are compared with those which could be found analytically and by theoretical models. Finally, a porous medium is considered to find its ETC.


2017 ◽  
Vol 14 (01) ◽  
pp. 1750002 ◽  
Author(s):  
Yi-Kun Wei ◽  
Xu-Qu Hu

Two-dimensional simulations of channel flow past an array of cylinders are carried out at high Reynolds numbers. Considering the thickness fluctuating effect on the equation of motion, a modified lattice Boltzmann method (LBM) is proposed. Special attention is paid to investigate the thickness fluctuations and vortex shedding mechanisms between 11 cylinders. Results for the velocity and vorticity differences are provided, as well as for the energy density and enstrophy spectra. The numerical results coincide very well with some published experimental data that was obtained by turbulent soap films. The spectra extracted from the velocity and vorticity fields are displayed from simulations, along with the thickness fluctuation spectrum H(k). Our results show that the statistics of thickness fluctuations resemble closely those of a passive scalar in turbulent flows.


1999 ◽  
Vol 385 ◽  
pp. 41-62 ◽  
Author(s):  
DEWEI QI

A lattice-Boltzmann method has been developed to simulate suspensions of both spherical and non-spherical particles in finite-Reynolds-number flows. The results for sedimentation of a single elliptical particle are shown to be in excellent agreement with the results of Huang, Hu & Joseph (1998) who used a finite-element method. Sedimentation of two-dimensional circular and rectangular particles in a two-dimensional channel and three-dimensional spherical particles in a tube with square cross-section is simulated. Computational results are consistent with experimentally observed phenomena, such as drafting, kissing and tumbling.


2016 ◽  
Vol 12 (2) ◽  
pp. 122-127
Author(s):  
Juraj Mužík

Abstract A Lattice Boltzmann method is used to analyse incompressible fluid flow in a two-dimensional cavity and flow in the channel past cylindrical obstacle. The method solves the Boltzmann’s transport equation using simple computational grid - lattice. With the proper choice of the collision operator, the Boltzmann’s equation can be converted into incompressible Navier-Stokes equation. Lid-driven cavity benchmark case for various Reynolds numbers and flow past cylinder is presented in the article. The method produces stable solutions with results comparable to those in literature and is very easy to implement.


2014 ◽  
Vol 670-671 ◽  
pp. 747-750
Author(s):  
Zhi Jun Gong ◽  
Jiao Yang ◽  
Wen Fei Wu

For indepth study on flow characteristics for fluid bypass obstacles in micro-channel, the Lattice Boltzmann Method (LBM) was used to simulate fluid flow over two circular cylinders in side-by-side arrangement of a micro-channel. The velocity distribution and recirculation zone length under different Reynolds numbers (Re = 0~100) and different spacing ratio (H/D= 0~2.0) were obtained. The results show that the pattern of flow and the size of recirculation zone in the micro-channel depend on the combined effect of Re and H/D.


2015 ◽  
pp. 157-168
Author(s):  
Natasa Lukic ◽  
Predrag Tekic ◽  
Jelena Radjenovic ◽  
Ivana Sijacki

The present study is concerned with two-sided lid-driven incompressible flow in rectangular, deep cavities applying lattice Boltzmann method. After validating the code for the square cavity, solutions for cavities with an aspect ratio 1.5 and 4 were obtained for the Reynolds numbers of 100, 400, 1000 and 3200. The influence of the Reynolds number and aspect ratio on the flow pattern and on the characteristics of vortices inside the cavity was studied. Symmetric flow pattern was obtained for all investigated cases. The middle of the cavity is mostly influenced by the increase in the aspect ratio. Critical aspect ratio, at which the birth of a primary vortex in the middle of the cavity takes place, was determined to be between 2.7 and 2.725.


Sign in / Sign up

Export Citation Format

Share Document