Pressure Fluctuation Reduction in Side Channel Pumps Using a Modified Impeller Blade

Author(s):  
Xueyuan Wei ◽  
Fan Zhang ◽  
Desmond Appiah ◽  
Ke Chen ◽  
Shouqi Yuan ◽  
...  

Abstract For the unique performance advantages of side channel pump delivering flows at high heads, it has been applied in many fields such as petrochemical, pharmaceutical, food processing, automobile fuel pumping etc. However, the operation of the pump is strongly affected by the intensity of the pressure fluctuation, thus the pressure fluctuation exiting within the pump cannot be neglected because of its direct influence on the noise and vibration performance. Therefore, reducing the pressure fluctuation intensity is a key point for research. The side channel pump studied in this paper is a prototype with an axial channel and a 24-blade impeller. The pressure fluctuation intensity of the pump is studied using numerical simulations at best efficiency point. The Reynolds-averaged Navier-Stokes equations (URANS) are solved with the Shear Stress Transport (SST) k-ω turbulence model using commercial CFX codes. The time and frequency plots of the pressure fluctuation coefficient, Cp of the original impeller scheme at different monitoring points revealed high pressure fluctuation intensities affecting the pump’s operating reliability. For the purpose of reducing the pressure fluctuation intensity in the pump, the impeller geometry is modified with a small blade at the outer radius. The study showed that the pressure fluctuation within the pump is reduced significantly at the monitoring points. Moreover, it is found out that the pressure fluctuation in both impeller schemes are mainly caused by the flow exchange between the impeller and side channel. The results of this paper can provide reference for pressure fluctuation reduction and Noise-Vibration-Harshness (NVH) study in turbomachinery.

Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


2020 ◽  
Vol 8 (6) ◽  
pp. 3977-3980

A numerical analysis is carried out to understand the flow characteristics for different impeller configurations of a single stage centrifugal blower. The volute design is based on constant velocity method. Four different impeller configurations are selected for the analysis. Impeller blade geometry is created with point by point method. Numerical simulation is carried out by CFD software GAMBIT 2.4.6 and FLUENT 6.3.26. GAMBIT work includes geometry definition and grid generation of computational domain. This process includes selection of grid types, grid refinements and defining correct boundary conditions. Processing work is carried out in FLUENT. The viscous Navier-Stokes equations are solved with control volume approach and the k-ε turbulence model. In this three dimensional numerical analysis is carried out with steady flow approach. The rotor and stator interaction is solved by mixing plane approach. Results of simulation are presented in terms of flow parameters, at impeller outlet and various angular positions inside the volute. Also, the contours of flow properties are presented at the outlet plane of fluid domain. Results suggest that for the same configurations of centrifugal blower, as we change geometrical parameter of impeller the flow inside the blower get affected.


2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Nicolas La Roche-Carrier ◽  
Guyh Dituba Ngoma ◽  
Walid Ghie

This paper deals with the numerical investigation of a liquid flow in a first stage of a multistage centrifugal pump consisting of an impeller, diffuser with return vanes, and casing. The continuity and Navier-Stokes equations with the k-ε turbulence model and standard wall functions were used. To improve the design of the pump's first stage, the impacts of the impeller blade height and diffuser vane height, number of impeller blades, diffuser vanes and diffuser return vanes, and wall roughness height on the performances of the first stage of a multistage centrifugal pump were analyzed. The results achieved reveal that the selected parameters affect the pump head, brake horsepower, and efficiency in a strong yet different manner. To validate the model developed, the results of the numerical simulations were compared with the experimental results from the pump manufacturer.


Author(s):  
Lu Zhang ◽  
Peng Wu ◽  
DaZhuan Wu

The automobile fuel pump studied in this paper is a mini regenerative pump consisting of a casing with an axial channel and an impeller with 33 radial blades. In this study, the pressure fluctuation characteristics of the regenerative pump were analyzed with the method of unsteady CFD analysis. To investigate the pressure fluctuation, the unsteady Reynolds-averaged Navier-Stokes equations (URANS) were solved with realizable k-ε turbulence model using the CFD code FLUENT. To study the effect of arc length of stripper on the pressure fluctuation, the pressure fluctuations at several locations of pumps with strippers of different arc length were analyzed in time and frequency domain. The static pressure contours at different times were presented to reveal the generating mechanism of pressure fluctuation of the regenerative pump. For the purpose of pressure fluctuation reduction, a random modulation of blade spacing method was applied to design a new impeller with uneven spaced blades. The pressure fluctuations of four different pump units of the combination of different blade distribution impellers with casings of different arc length of stripper were studied and discussed. The pressure fluctuation of the pump unit of combination of random blade distribution impeller and large arc length stripper is significantly reduced. In this paper, the generating mechanism of pressure fluctuation for regenerative pump is uncovered, and a good solution to the fundamental pressure fluctuation reduction of regenerative pump is put forward.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1603-1614
Author(s):  
Martin Scholtysik ◽  
Bernhard Mueller ◽  
Torstein K. Fannelop

Sign in / Sign up

Export Citation Format

Share Document