scholarly journals Reynolds-Averaged Navier-Stokes Modeling of Turbulent Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz Mixing Using a Higher-Order Shock-Capturing Method

Author(s):  
Oleg Schilling

Abstract A numerical implementation of a large number of Reynolds-averaged Navier–Stokes (RANS) models based on two-, three-, four-equation, and Reynolds stress turbulence models (using either the turbulent kinetic energy dissipation rate or the turbulent lengthscale) in an Eulerian, finite-difference shock-capturing code is described. The code uses third-order weighted essentially nonoscillatory (WENO) reconstruction of the advective fluxes, and second- or fourth-order central difference derivatives for the computation of spatial gradients. A third-order TVD Runge–Kutta time-evolution scheme is used to evolve the fields in time. Improved closures for the turbulence production terms, compressibility corrections, mixture transport coefficients, and a consistent initialization methodology for the turbulent fields are briefly summarized. The code framework allows for systematic comparisons of detailed predictions from a variety of turbulence models of increasing complexity. Applications of the code with selected K–ε based models are illustrated for each of the three instabilities. Simulations of Rayleigh–Taylor unstable flows for Atwood numbers 0.1–0.9 are shown to be consistent with previous implicit LES (ILES) results and with the expectation of increased asymmetry in the mixing layer characteristics with increasing stratification. Simulations of reshocked Richtmyer–Meshkov turbulent mixing corresponding to experiments with light-to-heavy transition in air/sulfur hexafluoride and incident shock Mach number Mas = 1.50, and heavy-to-light transition in sulfur hexafluoride/air with Mas = 1.45 are shown to be in generally good agreement with both pre- and post-reshock mixing layer widths. Finally, simulations of the seven Brown–Roshko Kelvin–Helmholtz experiments with various velocity and density ratios using nitrogen, helium, and air are shown to give mixing layer predictions in good agreement with data. The results indicate that the numerical algorithms and turbulence models are suitable for simulating these classes of inhomogeneous turbulent flows.

Author(s):  
Chen Fu ◽  
C Patrick Bounds ◽  
Christian Selent ◽  
Mesbah Uddin

The characterization of a racecar’s aerodynamic behavior at various yaw and pitch configurations has always been an integral part of its on-track performance evaluation in terms of lap time predictions. Although computational fluid dynamics has emerged as the ubiquitous tool in motorsports industry, a clarity is still lacking about the prediction veracity dependence on the choice of turbulence models, which is central to the prediction variability and unreliability for the Reynolds Averaged Navier–Stokes simulations, which is by far the most widely used computational fluid dynamics methodology in this industry. Subsequently, this paper presents a comprehensive assessment of three commonly used eddy viscosity turbulence models, namely, the realizable [Formula: see text] (RKE), Abe–Kondoh–Nagano [Formula: see text], and shear stress transport [Formula: see text], in predicting the aerodynamic characteristics of a full-scale NASCAR Monster Energy Cup racecar under various yaw and pitch configurations, which was never been explored before. The simulations are conducted using the steady Reynolds Averaged Navier–Stokes approach with unstructured trimmer cells. The tested yaw and pitch configurations were chosen in consultation with the race teams such that they reflect true representations of the racecar orientations during cornering, braking, and accelerating scenarios. The study reiterated that the prediction discrepancies between the turbulence models are mainly due to the differences in the predictions of flow recirculation and separation, caused by the individual model’s effectiveness in capturing the evolution of adverse pressure gradient flows, and predicting the onset of separation and subsequent reattachment (if there be any). This paper showed that the prediction discrepancies are linked to the computation of the turbulent eddy viscosity in the separated flow region, and using flow-visualizations identified the areas on the car body which are critical to this analysis. In terms of racecar aerodynamic performance parameter predictions, it can be reasonably argued that, excluding the prediction of the %Front prediction, shear stress transport is the best choice between the three tested models for stock-car type racecar Reynolds Averaged Navier–Stokes computational fluid dynamics simulations as it is the only model that predicted directionally correct changes of all aerodynamic parameters as the racecar is either yawed from the 0° to 3° or pitched from a high splitter-ground clearance to a low one. Furthermore, the magnitude of the shear stress transport predicted delta force coefficients also agreed reasonably well with test results.


Author(s):  
Bertrand Aupoix

The ability of turbulence models to predict self-similar mixing layers is investigated. The influence of velocity is well captured but no model reproduces the sensitivity of the mixing layer to density differences. A correction proposed for boundary layer flows hardly affects mixing layer predictions. A correction is proposed but is not satisfactory. At last, compressible turbulence effects are investigated. Without corrections, models cannot predict the spreading rate reduction. Standard corrections predict too weak a reduction. The sonic eddy concept is validated whatever the turbulence model. A form suitable for Navier-Stokes codes is proposed.


2002 ◽  
Vol 124 (4) ◽  
pp. 924-932 ◽  
Author(s):  
Scott Morton ◽  
James Forsythe ◽  
Anthony Mitchell ◽  
David Hajek

An understanding of vortical structures and vortex breakdown is essential for the development of highly maneuverable vehicles and high angle of attack flight. This is primarily due to the physical limits these phenomena impose on aircraft and missiles at extreme flight conditions. Demands for more maneuverable air vehicles have pushed the limits of current CFD methods in the high Reynolds number regime. Simulation methods must be able to accurately describe the unsteady, vortical flowfields associated with fighter aircraft at Reynolds numbers more representative of full-scale vehicles. It is the goal of this paper to demonstrate the ability of detached-eddy Simulation (DES), a hybrid Reynolds-averaged Navier-Stokes (RANS)/large-eddy Simulation (LES) method, to accurately predict vortex breakdown at Reynolds numbers above 1×106. Detailed experiments performed at Onera are used to compare simulations utilizing both RANS and DES turbulence models.


2012 ◽  
Vol 594-597 ◽  
pp. 2676-2679
Author(s):  
Zhe Liu

Although the conventional Reynolds-averaged Navier–Stokes (RANS) model has been widely applied in the industrial and engineering field, it is worthwhile to study whether these models are suitable to investigate the flow filed varying with the time. With the development of turbulence models, the unsteady Reynolds-averaged Navier–Stokes (URANS) model, detached eddy simulation (DES) and large eddy simulation (LES) compensate the disadvantage of RANS model. This paper mainly presents the theory of standard LES model, LES dynamic model and wall-adapting local eddy-viscosity (WALE) LES model. And the square cylinder is selected as the research target to study the flow characteristics around it at Reynolds number 13,000. The influence of different LES models on the flow field around the square cylinder is compared.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yefang Wang ◽  
Fan Zhang ◽  
Shouqi Yuan ◽  
Ke Chen ◽  
Xueyuan Wei ◽  
...  

Abstract In this work, the unsteady Reynolds-averaged Navier–Stokes (URANS) and three hybrid Reynolds-averaged Navier–Stokes-large eddy simulation (RANS-LES) models are employed to resolve the vortical flows in a typical single-stage side channel pump, to evaluate the suitability of these advanced turbulence models in predicting the pump hydraulic performance and unstable swirling flows. By the comparison of the overall performance, it can be observed that the results obtained by scale-adapted simulation (SAS) are closer to test data than shear stress transport (SST), detached eddy simulation (DES) and filter-based model (FBM). Simultaneously, the distribution of axial velocity on the plane near the interface is used to describe the position and intensity of internal fluid exchange between impeller and side channel. It is obvious that the intensity of mass flow exchange is strong near the inner and outer edges. Then, the vortex core region illustrates that the vortex is easily produced near the interface due to internal fluid exchange. Finally, the evolutions of circumferential in-plane vortical structures are presented to further account for the process of fluid exchange and the main vortex flows. It reveals that the recirculation flow presents a strong instability during 6–7 blade pitches as the fluid enters into the impeller and the flow is stable in downstream 7–8 blade pitches. Besides, the flow turns to be unsteady near outlet affected by the sudden change of fluid direction. This work could provide some suggestions for the choice of appropriate turbulence model in simulating strong swirling flows.


2009 ◽  
Vol 1 (2) ◽  
pp. 209-219 ◽  
Author(s):  
M. M. Karim ◽  
M. M. Rahman ◽  
M. A. Alim

Axisymmetric turbulent viscous flow around sphere is computed using finite volume method based on Reynolds-averaged Navier-Stokes (RANS) equations. Two-dimensional axisymmetric flow solver has been used to analyze flow at Reynolds number of 5×106. Spalart-Allmaras (S-A) and shear stress transport (SST) k-ω turbulence models are used to capture turbulent viscous flow. The numerical results in terms of the skin friction coefficient, pressure coefficient and drag coefficient for different Reynolds numbers have been shown either graphically or in the tabular form. Velocity vectors have been displayed graphically. The computed results show good agreement with published experimental measurements.  Keywords: Axisymmetric body of revolution; Sphere; Viscous drag; CFD; Turbulence model; Reynolds-averaged Navier-Stokes (RANS) equations. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.1286


Sign in / Sign up

Export Citation Format

Share Document