scholarly journals Computation of Axisymmetric Turbulent Viscous Flow Around Sphere

2009 ◽  
Vol 1 (2) ◽  
pp. 209-219 ◽  
Author(s):  
M. M. Karim ◽  
M. M. Rahman ◽  
M. A. Alim

Axisymmetric turbulent viscous flow around sphere is computed using finite volume method based on Reynolds-averaged Navier-Stokes (RANS) equations. Two-dimensional axisymmetric flow solver has been used to analyze flow at Reynolds number of 5×106. Spalart-Allmaras (S-A) and shear stress transport (SST) k-ω turbulence models are used to capture turbulent viscous flow. The numerical results in terms of the skin friction coefficient, pressure coefficient and drag coefficient for different Reynolds numbers have been shown either graphically or in the tabular form. Velocity vectors have been displayed graphically. The computed results show good agreement with published experimental measurements.  Keywords: Axisymmetric body of revolution; Sphere; Viscous drag; CFD; Turbulence model; Reynolds-averaged Navier-Stokes (RANS) equations. © 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v1i2.1286

2011 ◽  
Vol 8 (1) ◽  
pp. 49-58
Author(s):  
M. M. Karim ◽  
M. M. Rahman ◽  
M. A. Alim

Two-dimensional Finite Volume Method (FVM) based on Reynolds-averaged Navier-Stokes (RANS) equations is applied to solve the turbulent viscous flow around sphere and pod. Unstructured grid with boundary layer treatment is constructed around sphere whereas structured grid is generated around pod. Spalart-Allmaras (S-A) and Shear Stress Transport (SST) k-? turbulence models are used for sphere but SST k-? turbulence model is used only for pod to solve turbulent viscous flows at Reynold’s number of 5×106 and 3×106 respectively.  The numerical results in terms of the skin friction coefficient, pressure coefficient and drag coefficient are shown either graphically or in the tabular form. Velocity vectors as well as contour of pressure and velocity distribution are also displayed. Finally, the comparative study between flows around sphere and pod is done.DOI: http://dx.doi.org/10.3329/jname.v8i1.7388


Author(s):  
Chen Fu ◽  
C Patrick Bounds ◽  
Christian Selent ◽  
Mesbah Uddin

The characterization of a racecar’s aerodynamic behavior at various yaw and pitch configurations has always been an integral part of its on-track performance evaluation in terms of lap time predictions. Although computational fluid dynamics has emerged as the ubiquitous tool in motorsports industry, a clarity is still lacking about the prediction veracity dependence on the choice of turbulence models, which is central to the prediction variability and unreliability for the Reynolds Averaged Navier–Stokes simulations, which is by far the most widely used computational fluid dynamics methodology in this industry. Subsequently, this paper presents a comprehensive assessment of three commonly used eddy viscosity turbulence models, namely, the realizable [Formula: see text] (RKE), Abe–Kondoh–Nagano [Formula: see text], and shear stress transport [Formula: see text], in predicting the aerodynamic characteristics of a full-scale NASCAR Monster Energy Cup racecar under various yaw and pitch configurations, which was never been explored before. The simulations are conducted using the steady Reynolds Averaged Navier–Stokes approach with unstructured trimmer cells. The tested yaw and pitch configurations were chosen in consultation with the race teams such that they reflect true representations of the racecar orientations during cornering, braking, and accelerating scenarios. The study reiterated that the prediction discrepancies between the turbulence models are mainly due to the differences in the predictions of flow recirculation and separation, caused by the individual model’s effectiveness in capturing the evolution of adverse pressure gradient flows, and predicting the onset of separation and subsequent reattachment (if there be any). This paper showed that the prediction discrepancies are linked to the computation of the turbulent eddy viscosity in the separated flow region, and using flow-visualizations identified the areas on the car body which are critical to this analysis. In terms of racecar aerodynamic performance parameter predictions, it can be reasonably argued that, excluding the prediction of the %Front prediction, shear stress transport is the best choice between the three tested models for stock-car type racecar Reynolds Averaged Navier–Stokes computational fluid dynamics simulations as it is the only model that predicted directionally correct changes of all aerodynamic parameters as the racecar is either yawed from the 0° to 3° or pitched from a high splitter-ground clearance to a low one. Furthermore, the magnitude of the shear stress transport predicted delta force coefficients also agreed reasonably well with test results.


2002 ◽  
Vol 124 (4) ◽  
pp. 924-932 ◽  
Author(s):  
Scott Morton ◽  
James Forsythe ◽  
Anthony Mitchell ◽  
David Hajek

An understanding of vortical structures and vortex breakdown is essential for the development of highly maneuverable vehicles and high angle of attack flight. This is primarily due to the physical limits these phenomena impose on aircraft and missiles at extreme flight conditions. Demands for more maneuverable air vehicles have pushed the limits of current CFD methods in the high Reynolds number regime. Simulation methods must be able to accurately describe the unsteady, vortical flowfields associated with fighter aircraft at Reynolds numbers more representative of full-scale vehicles. It is the goal of this paper to demonstrate the ability of detached-eddy Simulation (DES), a hybrid Reynolds-averaged Navier-Stokes (RANS)/large-eddy Simulation (LES) method, to accurately predict vortex breakdown at Reynolds numbers above 1×106. Detailed experiments performed at Onera are used to compare simulations utilizing both RANS and DES turbulence models.


1989 ◽  
Author(s):  
Francesco Martelli ◽  
Vittorio Michelassi

An implicit procedure based on the artificial compressibility formulation is presented for the numerical solution of the two-dimensional incompressible steady Navier-Stokes equations in the presence of large separated regions. Turbulence effects are accounted for by the Chien low Reynolds number form of the K-ε turbulence model and the Baldwin-Lomax algebraic expression for turbulent viscosity. The governing equations are written in conservative form and implicitly solved in fully coupled form using the approximate factorization technique. Preliminary tests were carried out in a laminar flow regime to check the accuracy and stability of the method in two-dimensional and cylindrical axisymmetric flow configurations. After testing in laminar and turbulent flow regimes and comparing the two turbulence models, the code was successfully applied to an actual gas turbine diffuser at low Mach numbers.


2012 ◽  
Vol 594-597 ◽  
pp. 2676-2679
Author(s):  
Zhe Liu

Although the conventional Reynolds-averaged Navier–Stokes (RANS) model has been widely applied in the industrial and engineering field, it is worthwhile to study whether these models are suitable to investigate the flow filed varying with the time. With the development of turbulence models, the unsteady Reynolds-averaged Navier–Stokes (URANS) model, detached eddy simulation (DES) and large eddy simulation (LES) compensate the disadvantage of RANS model. This paper mainly presents the theory of standard LES model, LES dynamic model and wall-adapting local eddy-viscosity (WALE) LES model. And the square cylinder is selected as the research target to study the flow characteristics around it at Reynolds number 13,000. The influence of different LES models on the flow field around the square cylinder is compared.


Author(s):  
Daniel Routson ◽  
James Ferguson ◽  
John Crepeau ◽  
Donald McEligot ◽  
Ralph Budwig

In Reynolds-Averaged Navier Stokes (RANS) models simplifying assumptions breakdown in near wall regions. Wall functions/treatments become inaccurate and the homogeneity and isotropy models may not hold. To see the effect that these assumptions have on the validity of boundary layer results in a commercially available RANS code, key boundary layer parameters are compared from laminar, transitional, and fully turbulent RANS results to an existing direct numerical simulation (DNS) simulation for flow over a flat plate with an adverse pressure gradient (APG). Parameters compared include velocity profiles in the free stream, boundary layer thicknesses, skin friction coefficient and the pressure gradient parameter. Results show comparable momentum thickness and pressure gradient parameters between the transition RANS model and the DNS simulation. Differences in the onset of transition between the RANS transition model and DNS are compared as well. These simulations help evaluate the models used in the RANS code. Of most interest is the transition model, a transition shear-stress transport (SST) k–omega model. The RANS code is being used in conjunction with an APG boundary layer experiment being undertaken at the Idaho National Laboratory (INL).


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Yefang Wang ◽  
Fan Zhang ◽  
Shouqi Yuan ◽  
Ke Chen ◽  
Xueyuan Wei ◽  
...  

Abstract In this work, the unsteady Reynolds-averaged Navier–Stokes (URANS) and three hybrid Reynolds-averaged Navier–Stokes-large eddy simulation (RANS-LES) models are employed to resolve the vortical flows in a typical single-stage side channel pump, to evaluate the suitability of these advanced turbulence models in predicting the pump hydraulic performance and unstable swirling flows. By the comparison of the overall performance, it can be observed that the results obtained by scale-adapted simulation (SAS) are closer to test data than shear stress transport (SST), detached eddy simulation (DES) and filter-based model (FBM). Simultaneously, the distribution of axial velocity on the plane near the interface is used to describe the position and intensity of internal fluid exchange between impeller and side channel. It is obvious that the intensity of mass flow exchange is strong near the inner and outer edges. Then, the vortex core region illustrates that the vortex is easily produced near the interface due to internal fluid exchange. Finally, the evolutions of circumferential in-plane vortical structures are presented to further account for the process of fluid exchange and the main vortex flows. It reveals that the recirculation flow presents a strong instability during 6–7 blade pitches as the fluid enters into the impeller and the flow is stable in downstream 7–8 blade pitches. Besides, the flow turns to be unsteady near outlet affected by the sudden change of fluid direction. This work could provide some suggestions for the choice of appropriate turbulence model in simulating strong swirling flows.


Sign in / Sign up

Export Citation Format

Share Document